Free boundary problems and branching particle systems

Sarah Penington
University of Bath

Branching-selection systems:

- Particle systems: particles branch and move in space. Killing rule keeps number of particles constant.
- Toy models for a population under selection. Location of a particle (=individual) represents its evolutionary fitness.
- Introduced by Brunet and Derrida in 1990s. Recent results and lots of open conjectures about long-term behaviour.

Overview:

1. N-particle branching Brownian motion $(N-B B M)$ and related free boundary problem
2. Brownian bees-long-term behaviour
(3) \mathbb{H}
3. N-particle branching random walk Results and conjectures about long-term behaviour.

Focus on probabilistic ideas in proofs t how use PDE results.
N-particle branching Brownian motion ($N-B B M$)

- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

time

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

N-particle branching Brownian motion ($N-B B M$)
- N particles move in \mathbb{R} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the leftmost particle in the system is killed.
N particles in the system at all times.

Introduced by Maillard (2012). Natural continuous-time analogue of discrete-time processes introduced by Brunet and Derrida (1997).

Toy model for a population under natural selection.
position of a particle on \mathbb{R} represents evolutionary fitness. Individuals with lowest fitness are killed.

Want to understand long-term behaviour for large N (speed + shape of cloud of particles, genealogies) One tool: over a fixed timescale, as $N \rightarrow \infty$, density converges to solution of a free boundary problem.

Notation $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions at time t.
$L_{t}^{(N)}=\min _{i \in\{1, \ldots, N\}} X_{i}^{(N)}(t)$ leftmost particle position at time t.
Free boundary problem
Given a probability density $u_{0}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, find a pair $\left(u(t, x), L_{t}\right)$ that solves

$$
(F B P 1) \begin{cases}\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u & \text { for } t>0, x>L_{t} \\ u\left(t, L_{t}\right)=0 & \text { for } t>0 \\ \int_{L_{t}}^{\infty} u(t, y) d y=1 & \text { for } t>0 \\ u(0, x)=u_{0}(x) & \text { for } x \in \mathbb{R}\end{cases}
$$

A unique solution exists (Berestycki, Brunet, P. 2019).
It turns out that for large N,
$u(t, x) \approx$ density of particles at x at time $t \approx \lim _{\delta>0} \frac{1}{N} \frac{1}{2 \delta} \#\{$ particles in $(x-\delta, x+\delta)$ at time $t\}$
$L_{t} \approx$ position of leftmost particle at time $t=L_{t}^{(N)}$.
Why do we get this FBP?

- For $x>L_{t} \approx L_{t}^{(N)}$, particles. move according to EMs

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u
$$

- At $x=L_{t}^{(N)} \approx L_{t}$, particles are killed, so $u\left(t, L_{t}\right)=0$.
- Total number of particles $=N$, so $\int_{L_{t}}^{\infty} u(t, y) d y=1$.

Notation $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions at time t.
$L_{t}^{(N)}=\min _{i \in\{1, \ldots, N\}} X_{i}^{(N)}(t) \quad$ leftmost particle position at time t.
Free boundary problem
Given a probability density $u_{0}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, find a pair $\left(u(t, x), L_{t}\right)$ that solves

$$
\left(\text { FBP1) } \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u & \text { for } t>0, x>L_{t} \\
u\left(t, L_{t}\right)=0 & \text { for } t>0 \\
\int_{L_{t}}^{\infty} u(t, y) d y=1 & \text { for } t>0 \\
u(0, x)=u_{0}(x) & \text { for } x \in \mathbb{R} .
\end{array}\right.\right.
$$

Notation $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions at time t.
$L_{t}^{(N)}=\min _{i \in\{1, \ldots, N\}} X_{i}^{(N)}(t) \quad$ leftmost particle position at time t.
Free boundary problem
Given a probability density $u_{0}: \mathbb{R} \rightarrow \mathbb{R}_{+}$, find a pair $\left(u(t, x), L_{t}\right)$ that solves

$$
\left(\text { FBP1) } \left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u & \text { for } t>0, x>L_{t} \\
u\left(t, L_{t}\right)=0 & \text { for } t>0 \\
\int_{L_{t}}^{\infty} u(t, y) d y=1 & \text { for } t>0 \\
u(0, x)=u_{0}(x) & \text { for } x \in \mathbb{R} .
\end{array}\right.\right.
$$

Hydrodynamic limit
Theorem (De Mas, Ferrari, Presutti, Soprano-Loto 2017) Suppose $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with density u_{0}. Then for $x \in \mathbb{R}, t>0$,

$$
\frac{1}{N} \#\left\{i \leq N: X_{i}^{(N)}(t) \geqslant x\right\} \rightarrow \int_{x}^{\infty} u(t, y) d y \text { ass. as } N \rightarrow \infty
$$

Earlier result: Durrett+Remenik (2011). Hydrodynamic limit of a branching-selection system in continuous time. New particles jump from location of parent after branching. Leftmost particle killed.

Main proof idea: On short time intervals, sandwich N-BBM between two processes that are easier to control.

Proof of hydrodynamic limit result
Notation
Branching Brownian motion (BBM) : particles move according to independent BM branch into two particles at rate 1.
$X^{+}(t)=\left(X_{1}^{+}(t), \ldots, X_{N_{t}^{+}}^{+}(t)\right)$ locations of particles at time t.
(ordering not important -could use Ulam-Harris)

$$
H^{+}(t, x):=\frac{1}{N} \#\left\{i \leq N_{t}^{+}: X_{i}^{+}(t) \geqslant x\right\}=\frac{1}{N} \#\{\text { particles in BBM } \geqslant x \text { at time } t\} .
$$

N-ABM. $\quad X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ locations of particles at time t.

Ordering: at time O, particles are labelled $1,2, \ldots, N$.
When particle with label j branches, if leftmost particle has label k then the two new particles are given labels j and k (if $j=k$ then nothing happens).
Labels don't change between branching events.

$$
H^{(N)}(t, x):=\frac{1}{N} \mathbb{\#}\left\{i \leqslant N: X_{i}^{(N)}(t) \geqslant x\right\}=\frac{1}{N} \mathbb{\#}\{\text { particles in } N-B B M \geqslant x \text { at time } t\} .
$$

Proof of hydrodynamic limit result

$$
\begin{aligned}
& H^{+}(t, x):=\frac{1}{N} \mathbb{\#}\left\{i \leqslant N_{t}^{+}: X_{i}^{+}(t) \geqslant x\right\}=\frac{1}{N} \#\{\text { particles in } B B M \geqslant x \text { at time }+\} . \\
& H^{(N)}(t, x):=\frac{1}{N} \not \mathbb{Z}\left\{i \leqslant N: X_{i}^{(N)}(t) \geqslant x\right\}=\frac{1}{N} \mathbb{\#}\{\text { particles in } N-B B M \geqslant x \text { at time } t\} .
\end{aligned}
$$

Lemma (upper bound coupling) For any $X=\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{R}^{N}$, there exists a coupling of the $\operatorname{BBM}\left(X^{+}(t), t \geqslant 0\right)$ and the $N-B B M\left(X^{(N)}(t), t \geqslant 0\right)$ such that under the coupling,

$$
X^{(N)}(0)=X=X^{+}(0) \quad \text { and } \quad H^{(N)}(t, x) \leqslant H^{+}(t, x) \quad \forall t \geqslant 0, x \in \mathbb{R} \text {. }
$$

Proof: Particle system consisting of red and blue particles.
At time O, particle configuration is given by X, and all N particles are blue.
Particles move according to independent BM and branch at rate 1.
When a blue particle branches, the two offspring particles are coloured blue, and the leftmost blue particle in the system is coloured red.
When a red particle branches, the two offspring particles are red.
The blue particles form an N-BBM and the whole system of particles forms a BBM.
under this coupling,

$$
\#\left\{i \leqslant N: X_{i}^{(N)}(t) \geqslant x\right\} \leqslant \#\left\{i \leqslant N_{t}^{+}: X_{i}^{+}(t) \geqslant x\right\}
$$

Proof of hydrodynamic limit result
$H^{+}(t, x):=\frac{1}{N} \#\left\{i \leq N_{t}^{+}: X_{i}^{+}(t) \geq x\right\}=\frac{1}{N} \#\{$ particles in BBM $\geqslant x$ at time +$\}$.
$H^{(N)}(t, x):=\frac{1}{N} \mathbb{\#}\left\{i \leqslant N: X_{i}^{(N)}(t) \geqslant x\right\}=\frac{1}{N} \#\{$ particles in $N-B B M \geqslant x$ at time $t\}$.
Notation: For $\chi \in \mathbb{R}^{m}, \chi^{\prime} \in \mathbb{R}^{m^{\prime}}$, write $\chi \geqslant \chi^{\prime}$ iff
$|X \cap[x, \infty)| \geqslant\left|X^{\prime} \cap[x, \infty)\right| \forall x \in \mathbb{R}$ of $m \geqslant m^{\prime}$ and \exists permutation σ of $\{1, \ldots, m\}$ s.t.

$$
\chi_{\sigma(i)} \geqslant \chi_{i}^{\prime} \forall i \leq m^{\prime} .
$$

Lemma (Lower bound coupling) Suppose $X \in \mathbb{R}^{N}, \chi^{+} \in \mathbb{R}^{m}$ and $\chi \geqslant \chi^{+}$.
There exists a coupling of the $N-B B M\left(X^{(N)}(t), t \geq 0\right)$ and the BBM $\left(X^{+}(t), t \geqslant 0\right)$ such that under the coupling,

$$
X^{(N)}(0)=\chi, X^{+}(0)=\chi^{+} \text {, and for } t \geqslant 0, H^{(N)}(t, x) \geqslant H^{+}(t, x) \forall x \in \mathbb{R} \text { if } N_{t}^{+} \leqslant N \text {. }
$$

Proof: Let $\tau_{i}^{+}=i^{\text {th }}$ branching time in X^{+}.
© \#particles in BBM at
iff $X^{(N)}(t) \geqslant X^{+}(t)$ time +

Claim: For $X \in \mathbb{R}^{N}, X^{+} \in \mathbb{R}^{m_{+}}$with $X \geqslant X^{+}$, can couple $\left(X^{(N)}(t), t \geqslant 0\right)$ and $\left(X^{+}(t), t \geqslant 0\right)$ in such a way that

$$
x^{(N)}(0)=x, x^{+}(0)=x^{+} \quad \text { and } \quad x^{(N)}(t) \geqslant x^{+}(t) \quad \forall t \in\left\{\begin{array}{lll}
{\left[0, \tau_{1}^{+}\right]} & \text {if } & \left|x^{+}\right|<N \\
{\left[0, \tau_{1}^{+}\right)} & \text {if } & \left|x^{+}\right|=N
\end{array}\right.
$$

Assuming the claim, get the result by applying the claim successively on time intervals $\left[0, \tau_{1}^{+}\right]$, $\left[\tau_{1}^{+}, \tau_{2}^{+}\right], \ldots,\left[\tau_{N-m}^{+}, \tau_{N-m+1}^{+}\right)$.

Proof of hydrodynamic limit result
Claim: For $X \in \mathbb{R}^{N}, X^{+} \in \mathbb{R}^{m}$ with $X \geq X^{+}$, can couple $\left(X^{(N)}(t), t \geqslant 0\right)$ and $\left(X^{+}(t), t \geqslant 0\right)$ in such a way that

$$
\begin{aligned}
& x^{(N)}(0)=X, X^{+}(0)=X^{+} \quad \text { and } \quad X^{(N)}(t) \geqslant X^{+}(t) \quad \forall t \in\left\{\begin{array}{lll}
{\left[0, \tau_{1}^{+}\right]} & \text {if }\left|X^{+}\right|<N \\
{\left[0, \tau_{1}^{+}\right)} & \text {if }\left|x^{+}\right|=N
\end{array} \text { claim: Assume (by reordering) } \chi_{i} \geqslant X^{+} \forall i \leq m .\right.
\end{aligned}
$$

Proof of claim: Assume (by reordering) $\chi_{i} \geqslant \chi_{i}^{+} \forall i \leqslant m$.
Let $\tau_{i}=i^{\text {th }}$ branching time in $X^{(N)}$
$j_{i}=$ index of particle that branches at time τ_{i}
$k_{i}=$ index of leftmost particle at time τ_{i}.
Couple branching times so $\tau_{1}^{+}=\tau_{i^{+}}$, where $i^{+}=\min \left\{i \geqslant 1: j_{i} \leqslant m\right\}$.
Couple RMs up to time τ_{1} : Let $\left(B_{i}(t), t \geqslant 0\right)$ for $i \leqslant N$ be i.i.d. RMs starting at 0 .
Let $X_{i}^{(N)}(t)=\chi_{i}+B_{i}(t) \quad t<\tau_{1}, i \leq N$,

$$
\begin{aligned}
x_{i}^{+}(t)=x_{i}^{+}+B_{i}(t) \quad t<\tau_{1}, i \leq m, \quad \text { so for } i \leq m, & x_{i}^{(N)}(t) \geqslant x_{i}^{+}(t) \forall t<\tau_{1} \\
& \Rightarrow x^{(N)}(t) \geqslant x^{+}(t) \forall t<\tau_{1} .
\end{aligned}
$$

At time τ_{1}, if $\tau_{1} \neq \tau_{1}^{+}$(i.e. if $j_{1}>m$), for $i \leqslant N, \quad x_{i}^{(N)}\left(\tau_{1}\right)= \begin{cases}x_{i}^{(N)}\left(\tau_{1}-\right) & i \neq k_{1} \\ x_{j}^{(N)}\left(\tau_{1}-\right) & i=k_{1}\end{cases}$
so for $i \leqslant m, X_{i}^{(N)}\left(\tau_{1}\right) \geqslant X_{i}^{(N)}\left(\tau_{1}-\right) \geqslant X_{i}^{+}\left(\tau_{1}-\right)=X_{i}^{+}\left(\tau_{1}\right)$. Hence $X^{(N)}\left(\tau_{1}\right) \geqslant X^{+}\left(\tau_{1}\right)$.
Same construction on $\left[\tau_{1}, \tau_{2}\right], \ldots,\left[\tau_{i^{+}-1}, \tau_{i^{+}}\right) \Rightarrow x_{i}^{(N)}(t) \geqslant x_{i}^{+}(t)$ for $t<\tau_{1}^{+}, i \leq m$
$\Rightarrow x^{(N)}(t) \geqslant X^{+}(t)$ for $t<\tau_{1}^{+}$. Now assume $m<N$.
At time $\tau:=\tau_{1}^{+}$, particle $j^{+}:=j_{i^{+}}$branches in BBM and $N-B B M$, and particle $k^{+}:=k_{i^{+}}$is killed in $N-B B M$.
For $k \leqslant m, k \neq k^{+}, \quad X_{k}^{(N)}(\tau)=X_{k}^{(N)}(\tau-) \geqslant X_{k}^{+}(\tau-) \quad{ }_{m+1}$ particles in
and $\left.\quad X_{k^{+}}^{(N)}(\tau)=X_{j^{+}}^{(N)}(\tau-) \geqslant X_{j^{+}}^{+}(\tau-).\right\} \begin{aligned} & m+1 \text { particles in } \\ & X^{+}(\tau), \text { each } \leqslant a\end{aligned}$
So $X^{(N)}\left(\tau_{1}^{+}\right) \geqslant X^{+}\left(\tau_{1}^{+}\right)$. \square.
If $k^{+} \leqslant m, \quad X_{m+1}^{(N)}(\tau) \geqslant X_{k^{+}}^{(N)}(\tau-) \geqslant X_{k^{+}}^{+}(\tau-)$. different particle in $X^{(N)}(\tau)$

Proof of hydrodynamic limit result
For $\delta: \mathbb{R} \rightarrow \mathbb{R}$ and $m \in \mathbb{R}$, let $C_{m} f(x)=\min (f(x), m) \quad x \in \mathbb{R}$. $(x-y)^{2}$ "cut"
For $t>0$ and $\delta: \mathbb{R} \rightarrow \mathbb{R}$, let $G_{t} \delta(x)=\mathbb{E}_{x}\left[\delta\left(B_{t}\right)\right]=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}} \delta(y) d y \quad x \in \mathbb{R}$. "spread"
Take $c>0$ small and $t>0$ fixed. N Take N large.
Take $\chi \in \mathbb{R}^{N}$ and let $v_{0}^{(N)}(y)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{\chi_{i}} \geqslant y$. Then $G_{t} v_{0}^{(N)}(x)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{P}_{x}\left(\chi_{i} \geqslant B_{t}\right)$.
If $X^{+}(0)=\chi$ then w.h.p., $H^{+}(t, x)=\frac{1}{N} \sum_{i=1}^{N} e^{t} \mathbb{P}_{\chi_{i}}\left(B_{t} \geqslant x\right)+O\left(N^{-c}\right)=e^{t} G_{t} v_{0}^{(N)}(x)+O\left(N^{-c}\right) \quad \forall x \in \mathbb{R}$.
By upper bound coupling, if $X^{(N)}(0)=\chi, \quad H^{(N)}(t, x) \leqslant C_{1} H^{+}(t, x) \leqslant C_{1} e^{t} G_{t} v_{0}^{(N)}(x)+O\left(N^{-c}\right) \quad \forall x \in \mathbb{R}$ w.h.p.
\uparrow where $\chi^{+}(0)=\chi$
By lower bound coupling, if $X^{(N)}(0)=\chi$, then letting $X^{+}(0)=\chi^{+}=$the $N\left(e^{-t}-N^{-c}\right)$ rightmost particles in χ (so $x \geqslant x^{+}$and $\frac{1}{N} \sum_{i=1}^{1 x^{+1}} \mathbb{1}_{x_{i}^{+} \geqslant x}=C_{e^{-t}-N^{-c} v_{0}^{(N)}(x)}$)
if $N_{t}^{+} \leqslant N$ then $H^{(N)}(t, x) \geqslant H^{+}(t, x) \geqslant e^{t} G_{t} C_{e^{-t}-N^{-c} v_{0}^{(N)}(x)-O\left(N^{-c}\right) \forall x \text { w.h.p. }}$
\uparrow this happens w.h.p.
So for $\delta>0$ small,

For $t>0$ fixed, taking $\delta \sim N^{-c^{\prime}}$ s.t. $t / \delta=n \in \mathbb{N}$, by iterating,

Proof of hydrodynamic limit result
For $\delta: \mathbb{R} \rightarrow \mathbb{R}$ and $m \in \mathbb{R}$, let $C_{m} f(x)=\min (\delta(x), m) \quad x \in \mathbb{R}$.
For $t>0$ and $\delta: \mathbb{R} \rightarrow \mathbb{R}$, let $a_{t} \delta(x)=\mathbb{E}_{x}\left[\delta\left(B_{t}\right)\right]=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}} f(y) d y \quad x \in \mathbb{R}$.
For $t>0$ fixed, taking $\delta \sim N^{-c^{\prime}}$ s.t. $t / \delta=n \in \mathbb{N}$,

$$
\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}^{(N)}(x)-O\left(N^{-C "}\right) \leq H^{(N)}(t, x) \leq\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}^{(N)}(x)+O\left(N^{-C^{\prime \prime}}\right) \quad \forall x \text { w.h.p. }
$$

Lemma Let $v(t, x)=\int_{\infty}^{\infty} u(t, y) d y$, where (u, L) solves (FBP1) with initial condition u_{0}.
Let $v_{0}(x)=\int_{x}^{\infty} u_{0}(y) d y$. Then for $n \in \mathbb{N}$ and $\delta>0$,
$\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}(x) \leq v(n \delta, x) \leq\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}(x) \quad \forall x \in \mathbb{R}$.
Cut then grow/
spread.
Proof: Use Feynman-Kac formula.
\square Mass
Mass to the right of x in N-BBM with $N^{\prime \prime}=" \infty$. Grow/ spread and cut at same time.

Lemma For $v_{0}: \mathbb{R} \rightarrow[0,1], \delta>0$ and $n \in \mathbb{N}$,
Proof: 1. $\left\|G_{\delta \delta}-G_{\delta g}\right\|_{\infty} \leqslant\|f-g\|_{\infty}$
2. $\left\|C_{1} f-C_{1} g\right\|_{\infty} \leqslant\|\delta-g\|_{\infty}$
3. If $\|f\|_{\infty} \leqslant 1$ then $\left\|C_{1} e^{\delta} \delta-\delta\right\|_{\infty} \leq \max \left(e^{\delta}-1,1-e^{-\delta}\right)=e^{\delta}-1$.

$$
\text { 4. } \begin{aligned}
e^{\delta} G_{\delta} C_{e^{-\delta}} \delta & =G_{\delta} e^{\delta} C_{e^{-\delta}} \delta \\
& =G_{\delta} C_{1} e^{\delta} \delta .
\end{aligned}
$$

So $\left\|\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}-\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}\right\|_{\infty} \leq\left\|C_{1} e^{\delta} G_{\delta}\left(C_{1} e^{\delta} G_{\delta}\right)^{n-1} v_{0}-G_{\delta}\left(C_{1} e^{\delta} G_{\delta}\right)^{n-1} v_{0}\right\|_{\infty} \quad G_{\delta}\left(C_{1} e^{\delta} G_{\delta}\right)^{n-1} C_{1} e^{\delta} v_{0}$

$$
\begin{aligned}
& \text { by } 1+3 \\
& \quad \leqslant e^{\delta}-1+e^{\delta(n-1)}\left\|_{v_{0}}-C_{1} e^{\delta} v_{0}\right\|_{\infty} \leq\left(C_{1} e^{n \delta}+1\right)\left(e^{\delta}-1\right) \text { by } 3 .
\end{aligned}
$$

Proof of hydrodynamic limit result
For $\delta: \mathbb{R} \rightarrow \mathbb{R}$ and $m \in \mathbb{R}$, let $C_{m} f(x)=\min (f(x), m) \quad x \in \mathbb{R}$.
For $t>0$ and $\delta: \mathbb{R} \rightarrow \mathbb{R}$, let $G_{t} \delta(x)=\mathbb{E}_{x}\left[\delta\left(B_{t}\right)\right]=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}} \delta(y) d y \quad x \in \mathbb{R}$.
For $t>0$ fixed, taking $\delta \sim N^{-c^{\prime}}$ s.t. $t / \delta=n \in \mathbb{N}$,

$$
\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}^{(N)}(x)-O\left(N^{-C^{\prime \prime}}\right) \leq H^{(N)}(t, x) \leq\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}^{(N)}(x)+O\left(N^{-c \mid}\right) \quad \forall x \text { w.h.p. }
$$

Lemma Let $v(t, x)=\int_{\infty}^{\infty} u(t, y) d y$, where (u, L) solves (FBP1) with initial condition u_{0}.
Let $v_{0}(x)=\int_{x}^{\infty} u_{0}(y) d y$. Then for $n \in \mathbb{N}$ and $\delta>0$,

$$
\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}(x) \leq v(n \delta, x) \leq\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}(x) \quad \forall x \in \mathbb{R}
$$

Lemma For $v_{0}: \mathbb{R} \rightarrow[0,1], \delta>0$ and $n \in \mathbb{N},\left\|\left(C_{1} e^{\delta} G_{\delta}\right)^{n} v_{0}-\left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} v_{0}\right\|_{\infty} \leq\left(e^{n \delta}+1\right)\left(e^{\delta}-1\right)$
For N large, if $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with density u_{0},

$$
v_{0}^{(N)}(x)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{X_{i}^{(N)}(0) \geqslant x} \approx \mathbb{P}\left(X_{1}^{(N)}(0) \geqslant x\right)=v_{0}(x) \quad \forall x \in \mathbb{R} \quad \text { w.h.p. }
$$

So w.h.p. $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
& \left(e^{\delta} G_{\delta} C_{e^{-\delta}}\right)^{n} V_{0}(x)-0(1) \leq H^{(N)}(t, x) \leq\left(C_{1} e^{\delta} G_{\delta}\right)^{n} V_{0}(x)+0(1) \\
& \begin{array}{l}
\int \delta \\
v(n \delta, x)=v(t, x)
\end{array} \\
& v(n \delta, x)=v(t, x) .
\end{aligned}
$$

Long-term behaviour of N-BBM for large N
Asymptotic speed

$$
L_{t}^{(N)}=\min _{i \leqslant N} X_{i}^{(N)}(t) . \quad \exists \text { deterministic } a_{N} \text { s.t. } \lim _{t \rightarrow \infty} \frac{L_{t}^{(N)}}{t}=a_{N} \text { a.s. }
$$

NB. $\lim _{t \rightarrow \infty} \max _{i \leq N_{t}^{+}} \frac{X_{i}^{+}(t)}{t}=\sqrt{2}$ a.s. and $a_{N} \rightarrow \sqrt{2}$ as $N \rightarrow \infty$.
Selection principle

Selection principle: both PDE and particle system 'select' the same travelling wave to determine long-term behaviour.

Brownian bees

- N particles move in \mathbb{R}^{d} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the particle in the system furthest from the origin is killed.

Euclidean distance

N particles in the system at all times.
Can determine long-term behaviour for large N through connection with a free boundary problem.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions (in $\left.\mathbb{R}^{d}\right)$ at time t.
$M_{t}^{(N)}=\max _{i \in\{1, \ldots, N\}}\left\|X_{i}^{(N)}(t)\right\|$ maximum particle distance from 0 at time t. $\uparrow\|-\|$ is Euclidean $\left(l_{2}\right)$ norm
Guess: is $\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} M_{t}^{(N)}=\left\{\begin{array}{l}0 \\ \text { const. ? } \\ \infty\end{array}\right.$?

Brownian bees

- N particles move in \mathbb{R}^{d} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the particle in the system furthest from the origin is killed.

Euclidean distance
N particles in the system at all times.
Can determine long-term behaviour for large N through connection with a free boundary problem.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions (in $\left.\mathbb{R}^{d}\right)$ at time t.
$M_{t}^{(N)}=\max _{i \in\{1, \ldots, N\}}\left\|X_{i}^{(N)}(t)\right\|$ maximum particle distance from 0 at time t. $\tau\|-\|$ is Euclidean $\left(\ell_{2}\right)$ norm
Guess: is $\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} M_{t}^{(N)}=\left\{\begin{array}{l}0 \\ \text { const. ? } \\ \infty\end{array}\right.$?

Brownian bees

- N particles move in \mathbb{R}^{d} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the particle in the system furthest from the origin is killed.

Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through connection with a free boundary problem.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions (in $\left.\mathbb{R}^{d}\right)$ at time t.
$M_{t}^{(N)}=\max _{i \in\{1, \ldots, N\}}\left\|X_{i}^{(N)}(t)\right\|$ maximum particle distance from O at time t. $\uparrow\|-\|$ is Euclidean $\left(l_{2}\right)$ norm
Guess: is $\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} M_{t}^{(N)}=\left\{\begin{array}{l}0 \\ \text { const. ? } \\ \infty\end{array}\right.$?

Brownian bees

- N particles move in \mathbb{R}^{d} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the particle in the system furthest from the origin is killed.

Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through connection with a free boundary problem.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions (in $\left.\mathbb{R}^{d}\right)$ at time t.
$M_{t}^{(N)}=\max _{i \in\{1, \ldots, N\}}\left\|X_{i}^{(N)}(t)\right\|$ maximum particle distance from 0 at time t. $\tau_{\|-\|}$is Euclidean $\left(l_{2}\right)$ norm
Guess: is $\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} M_{t}^{(N)}=\left\{\begin{array}{l}0 \\ \text { const. ? } \\ \infty\end{array}\right.$?

Brownian bees

- N particles move in \mathbb{R}^{d} according to independent Brownian motions.
- Each particle, independently, branches into two particles after an Exp (1) time.
- Each time a particle branches, the particle in the system furthest from the origin is killed.

Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through connection with a free boundary problem.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions (in $\left.\mathbb{R}^{d}\right)$ at time t.
$M_{t}^{(N)}=\max _{i \in\{1, \ldots, N\}}\left\|X_{i}^{(N)}(t)\right\|$ maximum particle distance from O at time t. $\uparrow\|-\|$ is Euclidean $\left(l_{2}\right)$ norm
Guess: is $\lim _{N \rightarrow \infty} \lim _{t \rightarrow \infty} M_{t}^{(N)}=\left\{\begin{array}{l}0 \\ \text { const. ? } \\ \infty\end{array}\right.$?

Free boundary problem
Given an initial probability measure p_{0} on \mathbb{R}^{d}, find a pair $\left(u(t, x), R_{t}\right)$ that solves

$$
(\text { FBP2 }) \begin{cases}\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u & \|x\|<R_{t}, t>0 \\ u(t, x)=0 & \|x\| \geqslant R_{t}, t>0 \\ \int u(t, x) d x=1 & t>0 \\ \|x\| \leq R_{t} & \\ u(t, x) d x \rightarrow \mu_{0}(d x) & \text { weakly as }+v 0 .\end{cases}
$$

Theorem (Berestycki, Brunet, Nolen, P. 2020) For any Borel probability measure μ_{0} on \mathbb{R}^{d}, there is a unique solution (u, R) to (FBP2). Moreover, $t \mapsto R_{t}$ is continuous on $(0, \infty)$.
Write $\operatorname{Br}_{r}(x):=\left\{y \in \mathbb{R}^{d}:\|x-y\|<r\right\}$.
It turns out that for large $N, u(t, x) \approx$ density of particles at x at time t

$$
"=\lim _{\delta \rightarrow 0} \frac{1}{N} \frac{1}{\operatorname{Vol}\left(B_{\delta}(0)\right)} \nRightarrow\left\{\text { particles in } B_{\delta}(0) \text { at time }+\right\} .
$$

$R_{t} \approx$ largest particle distance from x at time $t=M_{t}^{(N)}$.
Why do we get this FBP? For $\|x\|<R_{t} \approx M_{t}^{(N)}$, particles move according to RMs $\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u$ branch into two particles at rate 1
At distance $R_{t} \approx M_{t}^{(N)}$ from 0 , particles are killed, so $u(t, x)=0$.
Total number of particles $=N$, so $\int_{\|x\| \leq R_{t}} u(t) d x=1$.

Hydrodynamic limit
Notation: $\mu^{(N)}(t, d x)=\frac{1}{N} \sum_{k=1}^{N} \delta_{k}^{(N)}(t)(d x)$ empirical measure of particles at time t.
Theorem (BBNP) Suppose μ_{0} is a Bore probability measure on \mathbb{R}^{d}, and

- $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with distribution μ_{0}
- (u, R) is the solution of (FBP2) with initial condition Mo.

Then for any $t>0$ and any measurable $A \subseteq \mathbb{R}^{d}$, almost surely

$$
\mu^{(N)}(t, A) \rightarrow \int_{A} u(t, x) d x \quad \text { and } \quad M_{t}^{(N)} \rightarrow R_{t} \quad \text { as } N \rightarrow \infty
$$

Brownian bees
$\mu^{(N)}(t, d x)$

Solution of FBP $\left(u(t, \cdot), R_{t}\right)$

Long-term behaviour of FBP solutions
Let $\left(u(x), R_{\infty}\right)$ be the unique solution to

$$
\left\{\begin{array}{cl}
-\Delta u(x)=u(x) & \|x\|<R_{\infty} \\
u(x)>0 & \|x\|<R_{\infty} \\
u(x)=0 & \|x\| \geqslant R_{\infty} \\
\int_{\|x\| \leq R_{\infty}} u(x) d x=1 &
\end{array}\right.
$$

Theorem (BBNP) For any initial Borel probability measure po, the solution (u, R) of (FBP2) satisfies $\lim _{t \rightarrow \infty} R_{t}=R_{\infty}$ and $\lim _{t \rightarrow \infty}\|u(t, \cdot)-u(\cdot)\|_{\infty}=0$.

Brownian bees

$$
\mu^{(N)}(t, d x)
$$

Solution of FBP $\left(u(t, \cdot), R_{t}\right)$

$$
t \rightarrow \infty
$$

Steady state solution $\left(U, R_{\infty}\right)$

Stationary distribution
Theorem (BBNP) The process $\left(X^{(N)}(t), t \geqslant 0\right)$ has a unique invariant measure $\pi^{(N)}$, which is a probability measure on $\left(\mathbb{R}^{d}\right)^{N}$.

For any initial particle configuration, the law of $X^{(N)}(t)$ converges in total variation norm to $\pi^{(N)}$ as $t \rightarrow \infty$. In particular, for $C \subseteq\left(\mathbb{R}^{d}\right)^{N}$ measurable,

$$
\mathbb{P}\left(X^{(N)}(t) \in C\right) \rightarrow \pi^{(N)}(C) \quad \text { as } \quad t \rightarrow \infty
$$

Stationary
distribution $\pi^{(N)}$

Solution of $F B P$ $\left(u(t, \cdot), R_{t}\right)$

$$
t \rightarrow \infty
$$

Steady state solution $\left(U, R_{\infty}\right)$

Selection principle
Theorem (BBNP) For $\varepsilon>0$ and $A \subseteq \mathbb{R}^{d}$ measurable, as $N \rightarrow \infty$,

$$
\pi^{(N)}\left(\left\{x \in\left(\mathbb{R}^{d}\right)^{N}:\left|\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{x_{i} \in A}-\int_{A} u(x) d x\right| \geqslant \varepsilon\right\}\right) \rightarrow 0
$$

and $\pi^{(N)}\left(\left\{\chi \in\left(\mathbb{R}^{d}\right)^{N}:\left|\max _{i \in\{1, \ldots, N\}}\left\|\chi_{i}\right\|-R_{\infty}\right| \geqslant \varepsilon\right\}\right) \rightarrow 0$.
ie. for N large, for $\left(X_{1}, \ldots, X_{N}\right) \in\left(\mathbb{R}^{d}\right)^{N}$ with law $\pi^{(N)}$,

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{X_{i} \in A} \approx \int_{A} U(x) d x \quad \text { and } \max _{i \in\{1, \ldots, N\}}\left\|X_{i}\right\| \approx R_{\infty} \quad \text { w.h.p. }
$$

Proof of hydrodynamic limit
Let $F^{(N)}(t, r):=\mu^{(N)}\left(B_{r}(0), t\right)=\frac{1}{N} \#\left\{i \in\{1, \ldots, N\}:\left\|X_{i}^{(N)}(t)\right\|<r\right\}$.
One-dimensional free boundary problem
Given $v_{0}:[0, \infty) \rightarrow[0,1]$ measurable, find a pair $\left(v(t, r), R_{t}\right)$ such that

$$
(\text { FBP3 }) \begin{cases}\frac{\partial v}{\partial t}=\frac{1}{2} \Delta v-\frac{d-1}{2 r} \frac{\partial v}{\partial r}+v & t>0, r \in\left(0, R_{t}\right) \\ v(t, r)=1 & t>0, r \geqslant R_{t} \\ \frac{\partial v}{\partial r}\left(t, R_{t}\right)=0 & t>0 \\ v(t, 0)=0 & t>0 \\ v(0, \cdot)=v_{0} & \end{cases}
$$

For N large, $\quad v(t, r) \approx F^{(N)}(t, r)$.
Proposition For any $v_{0}:[0, \infty) \rightarrow[0,1]$ measurable, there exists a unique solution (v, R) to (FBP3).
Proposition Let $v_{0}(r)=\mu_{0}\left(B_{r}(0)\right)$. Suppose (v, R) solves (FBP3) with initial condition v_{0}, and (u, \widetilde{R}) solves (FBP2) with initial condition μ_{0}. Then for $t>0$ and $r \geqslant 0$,

$$
R_{t}=\widetilde{R}_{t} \quad \text { and } \quad v(t, r)=\int_{\|x\|<r} u(t, x) d x \text {. }
$$

proportion
within distance r of O within distance r of 0

Proof of hydrodynamic limit
Let $F^{(N)}(t, r):=\mu^{(N)}\left(B_{r}(0), t\right)=\frac{1}{N} \#\left\{i \in\{1, \ldots, N\}:\left\|X_{i}^{(N)}(t)\right\|<r\right\}$.
One-dimensional free boundary problem
Given $v_{0}:[0, \infty) \rightarrow[0,1]$ measurable, find a pair $\left(v(t, r), R_{t}\right)$ such that

$$
(F B P 3)\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\frac{1}{2} \Delta v-\frac{d-1}{2 r} \frac{\partial v}{\partial r}+v \\
v(t, r)=1 \\
\frac{\partial v}{\partial r}\left(t, R_{t}\right)=0 \\
v(t, 0)=0 \\
v(0, \cdot)=v_{0}
\end{array}\right.
$$

$$
\begin{aligned}
& t>0, r \in\left(0, R_{t}\right) \\
& t>0, r \geqslant R_{t} \\
& t>0 \\
& t>0
\end{aligned}
$$

Notation: For $x^{(N)} \in\left(\mathbb{R}^{d}\right)^{N}$, write $\mathbb{P}_{x^{(N)}}(\cdot)=\mathbb{P}\left(\cdot \mid X^{(N)}(0)=x^{(N)}\right)$.
Proposition (one-dimensional hydrodynamic limit) There exists $c_{1}>0$ such that for N sufficiently large, for $t>0$ and $x^{(N)} \in\left(\mathbb{R}^{d}\right)^{N}$,

$$
\mathbb{P}_{x^{(N)}}\left(\sup _{r \geqslant 0}\left|F^{(N)}(t, r)-v^{(N)}(t, r)\right| \geqslant e^{2 t} N^{-c_{1}}\right) \leqslant e^{t} N^{-1-c_{1}},
$$

where $\left(v^{(N)}, R^{(N)}\right)$ solves $(F B P 3)$ with $v_{0}(r)=F^{(N)}(0, r) \leftarrow$ so under $\left.\mathbb{P}_{x^{(N)}}\right)^{N}$
Proof: Similar to N-BBM - upper and lower bound couplings.

Proof of hydrodynamic limit
Coupling with d-dimensional BBM: $\left(X_{i}^{+}(t), i \leqslant N_{t}^{+}\right)$particle positions at time t in BBM. For $0 \leq s \leq t$ and $i \leq N_{t}^{+}, X_{i, t}^{+}(s):=$ position of time-s ancestor of particle labelled i at time t. Couple so $\forall t \quad X^{(N)}(t) \subseteq X^{+}(t)$, and

$$
x^{(N)}(t)=\left\{X_{i}^{+}(t): i \leq N_{t}^{+},\left\|X_{i, t}^{+}(s)\right\| \leq M_{s}^{(N)} \quad \forall s \in[0, t]\right\}
$$

Assumptions for d-dimensional hydrodynamic limit result:
Suppose μ_{0} is a Borel probability measure on \mathbb{R}^{d}, and

- $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with distribution μ_{0}
- (u, R) solves (FBP2) with initial condition Yo.

Let (v, R) solve (FBP3) with initial condition $v_{0}(r)=\mu_{0}\left(B_{r}(0)\right)$.
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leq N^{-1-c_{2}}
$$

Proof: Step $1 \exists c_{3}>0$ s.t. for N sufficiently large, for $t \geqslant 0$,

$$
\mathbb{P}\left(\left\|F^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \geqslant e^{2 t} N^{-c_{3}}\right) \leqslant e^{t} N^{-1-c_{3}} .
$$

Proof of hydrodynamic limit
Suppose μ_{0} is a Bore probability measure on \mathbb{R}^{d}, and

- $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with distribution μ_{0}
- (u, R) solves (FBP2) with initial condition po.

Let (v, R) solve (FBP3) with initial condition $v_{0}(r)=\mu_{0}\left(B_{r}(0)\right)$.
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leqslant N^{-1-c_{2}} .
$$

Proof: Step $1 \exists c_{3}>0$ st. for N sufficiently large, for $t \geqslant 0$,

$$
\Rightarrow F^{(N)}\left(t, R_{t}\right) \approx v\left(t, R_{t}\right)
$$

$$
\mathbb{P}\left(\left\|F^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \geqslant e^{2 t} N^{-c_{3}}\right) \leqslant e^{t} N^{-1-c_{3}} .
$$ w.h.p. $=1$

Proof of step 1:
Let $\left(v^{(N)}, R^{(N)}\right)$ solve (FBP3) with initial condition $v_{0}^{(N)}(r)=F^{(N)}(O, r)$. Then

$$
\left\|F^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \leqslant\left\|F^{(N)}(t, \cdot)-v^{(N)}(t, \cdot)\right\|_{\infty}+\left\|v^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty}
$$

use one-dimensional use that $\left\|v^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \leqslant e^{t}\left\|v_{0}^{(N)}-v_{0}\right\|_{\infty}$ hydrodynamic limit

$$
=e^{t} \sup _{r \geqslant 0}\left|F^{(N)}(0, r)-\mu_{0}\left(B_{r}(0)\right)\right|
$$

+ quantitative Glivenko-Cantelli theorem.

Proof of hydrodynamic limit
Suppose μ_{0} is a Borel probability measure on \mathbb{R}^{d}, and

- $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with distribution μ_{0}
- (u, R) solves (FBP2) with initial condition po.

Let (v, R) solve (FBP3) with initial condition $V_{0}(r)=\mu_{0}\left(B_{r}(0)\right)$.
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leq N^{-1-c_{2}}
$$

Proof: Step $1 \exists c_{3}>0$ s.t. for N sufficiently large, for $t \geqslant 0$,

$$
\Rightarrow F^{(N)}\left(t, R_{t}\right) \approx v\left(t, R_{t}\right)
$$

$$
\mathbb{P}\left(\left\|F^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \geqslant e^{2 t} N^{-c_{3}}\right) \leqslant e^{t} N^{-1-c_{3}} .
$$ w.h.p. $=1$

Step 2 Let $\varepsilon=N^{-C_{3} / 2}$. For N sufficiently large, for $t \in[0, T]$,

$$
\mathbb{P}\left(\exists s \in[\varepsilon, 2 \varepsilon]: M_{t+s}^{(N)}>R_{t}+\varepsilon^{1 / 3}\right) \leq 2 e^{\top} N^{-1-c_{3}}
$$

Proof of step 2: Suppose $F^{(N)}\left(t, R_{t}\right) \geqslant 1-e^{2 t} N^{-c_{3}}$ (happens w.h.p. by Step 1). Then w.h.p.

- by time $t+\varepsilon$, the particles in $B_{R_{t}}(0)$ at time 0 have $>N$ descendants in the BBM
- on the time interval $[t, t+2 \varepsilon]$, no particles in the BBM move more than distance $\frac{1}{3} \varepsilon^{1 / 3}$ from their time- t ancestor's position.

$$
\Rightarrow M_{t+s^{*}}^{(N)} \leqslant R_{t}+\frac{1}{3} \varepsilon^{1 / 3} \text { some } s^{*} \in[0, \varepsilon]
$$

Proof of hydrodynamic limit
Suppose μ_{0} is a Borel probability measure on \mathbb{R}^{d}, and

- $X_{1}^{(N)}(0), \ldots, X_{N}^{(N)}(0)$ are i.i.d. with distribution μ_{0}
- (u, R) solves (FBP2) with initial condition po.

Let (v, R) solve (FBP3) with initial condition $v_{0}(r)=\mu_{0}\left(B_{r}(0)\right)$.
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leq N^{-1-c_{2}}
$$

Proof: Step $1 \exists c_{3}>0$ s.t. for N sufficiently large, for $t \geqslant 0$,

$$
\Rightarrow F^{(N)}\left(t, R_{t}\right) \approx v\left(t, R_{t}\right)
$$

$$
\mathbb{P}\left(\left\|F^{(N)}(t, \cdot)-v(t, \cdot)\right\|_{\infty} \geqslant e^{2 t} N^{-c_{3}}\right) \leqslant e^{t} N^{-1-c_{3}} .
$$ w.h.p. $=1$

Step 2 Let $\varepsilon=N^{-C_{3} / 2}$. For N sufficiently large, for $t \in[0, T]$,

$$
\mathbb{P}\left(\exists s \in[\varepsilon, 2 \varepsilon]: M_{t+s}^{(N)}>R_{t}+\varepsilon^{1 / 3}\right) \leq 2 e^{\top} N^{-1-c_{3}}
$$

Apply Step 1 with $t=k \varepsilon$, for $k \in \mathbb{N}_{0}, k \leq\lfloor T / \varepsilon\rfloor$.
Since $t \mapsto R_{t}$ is continuous on $(0, \infty)$, we can take N sufficiently large that

$$
R_{\varepsilon(L t / \varepsilon\rfloor-1)}+\varepsilon^{1 / 3} \leqslant R_{t}+\eta \quad \forall t \in[\eta, T] .
$$

Proof of hydrodynamic limit
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leq N^{-1-c_{2}} .
$$

Proof of d-dimensional hydrodynamic limit:
Claim $\exists c_{4}>0$ s.t. for $t>0, \delta>0$ and $A \subseteq \mathbb{R}^{d}$ measurable, for N sufficiently large,

$$
\mathbb{P}\left(\mu^{(N)}(t, A)-\int_{A} u(t, x) d x \geqslant \delta\right) \leqslant N^{-1-c_{4}}
$$

Then since $\mu^{(N)}(t, A)=1-\mu^{(N)}\left(t, \mathbb{R}^{d} \backslash A\right)$ and $\int_{A} u(t, x) d x=1-\int_{\mathbb{R}^{d} \backslash A} u(t, x) d x$,

$$
\mathbb{P}\left(\mu^{(N)}(t, A)-\int_{A} u(t, x) d x \leqslant-\delta\right)=\mathbb{P}\left(\mu^{(N)}\left(t, \mathbb{R}^{d} \backslash A\right)-\int_{\mathbb{R}^{d} \backslash A} u(t, x) d x \geqslant \delta\right) \leqslant N^{-1-c_{4}}
$$

for N sufficiently large, by Claim. So by Borel-Cantelli, ass.
$\left|\psi^{(N)}(t, A)-\int_{A} u(t, x) d x\right|<\delta$ and $M_{t}^{(N)}>R_{t}-\delta^{\prime}$ for N sufficiently large.

Proof of hydrodynamic limit
Proposition There exists $c_{2}>0$ such that for any $0<\eta<T$, for N sufficiently large,

$$
\mathbb{P}\left(\exists t \in[\eta, T]: M_{t}^{(N)}>R_{t}+\eta\right) \leq N^{-1-c_{2}} .
$$

Proof of d-dimensional hydrodynamic limit:
Claim $\exists c_{4}>0$ s.t. for $t>0, \delta>0$ and $A \subseteq \mathbb{R}^{d}$ measurable, for N sufficiently large,

$$
\mathbb{P}\left(\mu^{(N)}(t, A)-\int_{A} u(t, x) d x \geqslant \delta\right) \leq N^{-1-c_{4}}
$$

Proof of claim: For $\eta>0$ and $t \geqslant 0$, let $e_{\eta, t}=\left\{X_{i}^{+}(t): i \leq N_{t}^{+},\left\|X_{i, t}^{+}(s)\right\| \leq R_{s}+\eta \forall s \in[\eta, t]\right\}$. If $M_{s}^{(N)} \leqslant R_{S}+\eta \quad \forall s \in[\eta, t]$ then $X^{(N)}(t) \subseteq \varepsilon_{\eta, t}$.
So $\mathbb{P}\left(\mu^{(N)}(t, A)-\int_{A} u(t, x) d x \geqslant \delta\right)$

$$
\leq \mathbb{P}\left(\exists s \in[\eta, t]: M_{s}^{(N)}>R_{s}+\eta\right)+\mathbb{P}\left(\frac{1}{N}\left|e_{\eta, t} \cap A\right|-\int_{A} u(t, x) d x \geqslant \delta\right)
$$

use Proposition
use $\lim _{\eta \downarrow 0} \mathbb{E}\left[\frac{1}{N}\left|e_{\eta, t} \cap A\right|\right]=\int_{A} u(t, x) d x$ and $\mathbb{E}\left[\left(\frac{1}{N}\left|e_{\eta, t} \cap A\right|-\mathbb{E}\left[\frac{1}{N}\left|e_{\eta, t} \cap A\right|\right]\right)^{4}\right] \lesssim N^{-2}$.

Long-term behaviour - free boundary problem
Recall $\left(u, R_{\infty}\right)$ is steady state solution of (FBP2).
Let $V(r)=\int_{\|x\|<r} U(x) d x$. Then $\left(V, R_{\infty}\right)$ is a steady state solution of (FBP3).
Proposition For $c>0, K>0$ and $\varepsilon>0$, there exists $t_{\varepsilon}=t_{\varepsilon}(c, K) \in(0, \infty)$ such that if $v_{0}:[0, \infty) \rightarrow[0,1]$ is non-decreasing with $v_{0}(K) \geqslant c$ and (v, R) solves (FBP3) with initial condition v_{0} then

$$
\begin{equation*}
|V(t, r)-V(r)|<\varepsilon \quad \forall r \geqslant 0 \quad \text { and } \quad\left|R_{t}-R_{\infty}\right|<\varepsilon \quad \forall t \geqslant t_{\varepsilon} \tag{*}
\end{equation*}
$$

Proof: Step 1 Show ($*$) holds for $\left(v^{-}, R^{-}\right)$and $\left(v^{+}, R^{+}\right)$, where

- $\left(v^{-}, R^{-}\right)$solves (FBP3) with initial condition $v_{o}^{-}(r)=c \mathbb{1}_{r \geqslant k}$
- $\left(r^{+}, R^{+}\right)$solves (FBP3) with initial condition $v_{0}^{+}(r)=1$.

Step 2 Comparison principle: If $v_{0}^{(1)}(r) \leq v_{0}^{(2)}(r) \forall r$ and $\left(v^{(i)}, R^{(i)}\right)$ solves (FBP3) with initial condition $v_{0}^{(i)}(i=1,2)$ then

$$
v^{(1)}(t, r) \leqslant v^{(2)}(t, r) \quad \forall t>0, r \geqslant 0 \Rightarrow R_{t}^{(1)} \geqslant R_{t}^{(2)} \quad \forall t>0 .
$$

For $v_{0}:[0, \infty) \rightarrow[0,1]$ non-decreasing with $v_{0}(K) \geqslant c, v_{0}^{-}(r) \leqslant v_{0}(r) \leqslant v_{0}^{+}(r) \forall r \geqslant 0$, So $v^{-}(t, r) \leqslant v(t, r) \leqslant v^{+}(t, r) \forall t>0, r \geqslant 0$ and $R_{t}^{+} \leqslant R_{t} \leqslant R_{t}^{-} \forall t>0$.

Long-term behaviour - Brownian bees
Theorem Take $K>0$ and $c>0$. For $\varepsilon>0$, for $N \geqslant N_{\varepsilon}$ and $t \geqslant T_{\varepsilon}$, for an initial condition $x^{(N)} \in\left(\mathbb{R}^{d}\right)^{N}$ such that $F^{(N)}(0, K) \geqslant c$,

$$
\begin{array}{rr}
& \mathbb{P}_{x^{(N)}}\left(\sup _{r}\left|F^{(N)}(t, r)-V(r)\right| \geqslant \varepsilon\right)<\varepsilon \\
\text { and } \quad & \mathbb{P}_{x^{(N)}}\left(\left|M_{t}^{(N)}-R_{\infty}\right| \geqslant \varepsilon\right)<\varepsilon .
\end{array}
$$

Proof: Assume wog K is large and c is small. Fix T large, and take $t \geqslant T$.
Suppose $F^{(N)}(t-T, K) \geqslant c$. Then

1. If N is large, w.h.p. $F^{(N)}(t, \cdot) \approx v^{(N)}(T, \cdot)$, where $\left(v^{(N)}, R^{(N)}\right)$ solves (FBP3) with $v_{0}(r)=F^{(N)}(t-T, r)$, by $1 d$ hydrodynamic limit result.
2. If T is large, $v^{(N)}(T, \cdot) \approx V(\cdot)$ because $v_{0}(K)=F^{(N)}(t-T, K) \geqslant c$.

So w.h.p. $F^{(N)}(t, \cdot) \approx V(\cdot)$. Hence STP:
Claim For large $s, F^{(N)}(s, K) \geqslant c$ w.h.p.

Long-term behaviour - Brownian bees
Claim For large $s, F^{(N)}(S, K) \geqslant c$ w.h.p. (Assuming K is large and c is small.)
Proof of claim: Fix $t_{0}>0$. Let $D_{n}=\min \left\{i \in \mathbb{N}_{0}: F^{(N)}\left(n t_{0}, K+i\right) \geqslant c\right\}$.
Lemma For $n \in \mathbb{N}_{0}$ and $m>0$, if $D_{n} \leqslant m$ then

$$
\mathbb{P}\left(D_{n+1}>m+j \mid F_{n t_{0}}\right) \leq 4 d N e^{t_{0}} e^{-j^{2} / 36 d t_{0}} \quad \forall j \in \mathbb{N}
$$

particles
\uparrow natural filtration
Proof: Take $n=0$ wog.
Coupling with BBM. Suppose $\left\|X_{i}^{+}(t)-X_{i, t}^{+}(0)\right\|<\frac{1}{3} j \quad \forall t \in\left[0, t_{0}\right], i \leq N_{t}^{+}$.

- Case 1: If $M_{t}^{(N)}>K+m+\frac{1}{3} j \quad \forall t \leq t_{0}$, then no descendants of particles in $B_{K+m}(0)$ are killed by time to, so there are $\geqslant c N$ particles in $B_{K+m+1 / 3 j}$ at time to.
- Case 2: If $M_{t^{*}}^{(N)} \leq K+m+\frac{1}{3} j$ for some $t^{*} \leq t_{0}$, then at time t^{*}, all surviving particles are in $B_{K+m+1 / 3 j}(0)$, and for $i \leq N_{t_{0}}^{+}$,

$$
\left\|X_{i}^{+}\left(t_{0}\right)-X_{i, t_{0}}^{+}\left(t^{*}\right)\right\| \leq\left\|X_{i}^{+}\left(t_{0}\right)-X_{i, t_{0}}^{+}(0)\right\|+\left\|X_{i, t_{0}}^{+}(0)-X_{i, t_{0}}^{+}\left(t^{*}\right)\right\| \leq 2 / 3 j,
$$

so all surviving particles are in $B_{k+m+j}(0)$ at time t_{0}.

Long-term behaviour - Brownian bees
Claim For large $s, F^{(N)}(S, K) \geqslant c$ w.h.p. (Assuming K is large and C is small.)
Proof of claim: Fix $t_{0}>0$. Let $D_{n}=\min \left\{i \in \mathbb{N}_{0}: F^{(N)}\left(n t_{0}, K+i\right) \geqslant c\right\}$.
Lemma For $n \in \mathbb{N}_{0}$ and $m>0$, if $D_{n} \leqslant m$ then

$$
\mathbb{P}\left(D_{n+1}>m+j \mid F_{n t_{0}}\right) \leq 4 d N e^{t_{0}} e^{-j^{2} / 36 d t_{0}} \quad \forall j \in \mathbb{N}
$$

particles
\uparrow natural filtration
For t_{0} large, for $m \geqslant 0$, if $v_{0}(K+m) \geqslant c$ then if (v, R) solves (FBP3),

$$
v\left(t_{0}, K+m-1\right) \geqslant 2 c
$$

So by $1 d$ hydrodynamic limit, if $D_{n} \leq m, \quad \mathbb{P}\left(D_{n+1}>m-1 \mid F_{n t_{0}}\right) \ll N^{-1}$.
Use Lemma for $j \geqslant(\log N)^{2 / 3}$.
Can couple $\left(D_{n}\right)_{n=0}^{\infty}$ with a positive recurrent Markov chain $\left(Y_{n}\right)_{n=0}^{\infty}$ in such a way that $D_{n} \leqslant Y_{n} \forall n$ and $\mathbb{P}\left(Y_{n}=0\right) \geqslant 1-\varepsilon$ for n large.
Then $Y_{n}=0 \Rightarrow D_{n}=0 \Rightarrow F^{(N)}\left(n t_{0}, K\right) \geqslant c$.

Barycentric Brownian bees L. Addario-Berry, J. Lin, T. Tendron 2020
N particles in \mathbb{R}^{d} moving according to Brownian motions and branching at rate 1.
Each time a particle branches, the particle furthest from the centre of mass (barycentre) of the system is killed.
Notation: $X^{(N)}(t)=\left(X_{1}^{(N)}(t), \ldots, X_{N}^{(N)}(t)\right)$ particle positions at time t.
$\bar{X}(t)=\frac{1}{N} \sum_{k=1}^{N} X_{k}^{(N)}(t) \quad$ barycentre at time t.
Theorem (Invariance principle) For $N \geqslant 1, \exists \sigma=\sigma(d, N) \in(0, \infty)$ s.t. as $m \rightarrow \infty$,

$$
\left(m^{-1 / 2} \bar{X}(t m), 0 \leq t \leq 1\right) \xrightarrow{d}\left(\sigma B_{t}\right)_{0 \leq t \leq 1}
$$

w.r.t. Skorohod topology.

Conjecture For large N, at a large time t, for $A \subseteq \mathbb{R}^{d}$,

$$
\frac{1}{N} \not \mathbb{\#}\left\{i \leq N: X_{i}^{(N)}(t)-\bar{X}(t) \in A\right\} \approx \int_{A} U(x) d x \quad \text { w.h.p. }
$$

General d-dimensional N-BBM N. Berestycki, L.Z. Zhao 2018
$F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ fitness function. Fitness value of a particle at x is $F(x)$.
N particles in \mathbb{R}^{d} moving according to Brownian motions and branching at rate 1.
Each time a particle branches, the particle in the system with the lowest fitness value is killed.

Case $F(x)=\|x\|$ Particles form a clump that moves away from O at a deterministic speed in a random direction.

Case $F(x)=\langle\lambda, x\rangle$ Particles form a clump that moves in direction λ at a deterministic speed.
Conjecture Hydrodynamic limit. Let $\Omega_{l}=\left\{x \in \mathbb{R}^{d}: F(x)>l\right\}$.
Find $(u(t, x), l(t))$ s.t.

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u & t>0, x \in \Omega_{l(t)} \\
u(t, x)=0 & t>0, x \notin \Omega_{l(t)} \\
\int_{\mathbb{R}^{d}} u(t, x) d x=1 & t>0 \\
u(t, \cdot) \rightarrow \text { po weakly as } \quad t \geqslant 0
\end{array}
$$

N-particle branching random wall ($N-B R W$)
Let X be a real-valued random variable (jump distribution) N particles with locations in \mathbb{R}.
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the 2 N offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the 2 N offspring particles) form the population at time $n+1$.
Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ ass. and in L^{1}.
Theorem (Bérard and Gouéré 2010) If $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (+technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher - KPP equation with noise
(Mueller, Mytnik, Quastel 2009)
N-particle branching random walk ($N-B R W$)
Let X be a real-valued random variable (jump distribution) N particles with locations in \mathbb{R}.
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the 2 N offspring particles)
 form the population at time $n+1$.
Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ a.s. and in L^{1}.
Theorem (Bérard and Gouéré 2010) If $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (+technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher - KPP equation with noise
(Mueller, Mytnik, Quastel 2009)
N-particle branching random walk ($N-B R W$)
Let X be a real-valued random variable (jump distribution) N particles with locations in \mathbb{R}.
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the $2 N$ offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the 2 N offspring particles)
 form the population at time $n+1$.
Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ a.s. and in L^{1}.
Theorem (Bérard and Gouéré 2010) If $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (+technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher - KPP equation with noise
(Mueller, Mytnik, Quastel 2009)
N-particle branching random walk ($N-B R W$)
Let X be a real-valued random variable (jump distribution) N particles with locations in \mathbb{R}.
At each time $n \in \mathbb{N}_{0}$, each particle has two offspring.
Each of the 2 N offspring particles makes an independent jump from its parent's location, with the same law as X.
The N rightmost particles (of the 2 N offspring particles)
 form the population at time $n+1$.
Notation: $X_{1}^{(N)}(n) \leq X_{2}^{(N)}(n) \leq \ldots \leq X_{N}^{(N)}(n)$ ordered particle positions at time n.
Asymptotic speed
If $\mathbb{E}[X]<\infty$ then $\exists v_{N} \in(0, \infty)$ s.t. $\lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}=\lim _{n \rightarrow \infty} \frac{X_{1}^{(N)}(n)}{n}$ a.s. and in L^{1}.
Theorem (Bérard and Gouéré 2010) If $\mathbb{E}\left[e^{\lambda x}\right]<\infty$ for some $\lambda>0$ (technical assumptions) then $\quad \lim _{N \rightarrow \infty} v_{N}=v_{\infty}$ exists and $v_{\infty}-v_{N} \sim c(\log N)^{-2}$ as $N \rightarrow \infty$.

Conjectured by Brunet + Derrida 1997. Related result for Fisher - KPP equation with noise
(Mueller, Mytnik, Quastel 2009)

Genealogy
Fix $k \in \mathbb{N}$. Sample k particles uniformly at random from the N particles at a large time t. Trace their ancestry backwards in time
\rightarrow process $\left(P_{n}\right)_{n=0}^{\infty}$ of partitions of $\{1, \ldots, k\} \quad$ Coalescent process i and j in same block in P_{n} if common ancestor at time $t-n$.

Bolthausen-Sznitman coalescent

$$
\begin{gathered}
\text { Merger rate of any given } k \text {-tuple of blocks }=\frac{(k-2)!(b-k)!}{(b-1)!} \\
\text { when b blocks in total }
\end{gathered}
$$

Thanks to A. Wakolbinger and G. Kersting

Genealogy
Fix $k \in \mathbb{N}$. Sample k articles uniformly at random from the N particles at a large time t. Trace their ancestry backwards in time
\rightarrow process $\left(P_{n}\right)_{n=0}^{\infty}$ of partitions of $\{1, \ldots, k\} \quad$ Coalescent process i and j in same block in P_{n} if common ancestor at time $t-n$.
12345 Bolthausen-Sznitman coalescent

$$
\begin{aligned}
& \text { Merger rate of any given } k \text {-tuple of blocks }=\frac{(k-2)!(b-k)!}{(b-1)!} \\
& \text { when b blocks in total }
\end{aligned}
$$

Conjecture (Brunet, Derrida, Mueller, Munier)
If X has exponential moments then the genealogy of a sample on a $(\log N)^{3}$ timescale converges to a Bolthausen-Sznitman coalescent as $N \rightarrow \infty$. (Also for N-ABM.)
Berestycki, Berestycki, Schweinsberg: BBM with drift $-\sqrt{2-\frac{2 \pi^{2}}{(\log N+3 \log \log N}}$, particles killed if hit O . Under suitable initial conditions, population has size $\sim N$. Theorem sample particles at time $t(\log N)^{3}$. After rescaling time by $\frac{2 \pi}{(\log N)^{3}}$, genealogy converges to Bolthausen-Sznitman coalescent as $N \rightarrow \infty$.
N-BRW with heavy-tailed jump distribution
Suppose $\mathbb{P}(X>x) \sim x^{-\alpha}$ as $x \rightarrow \infty$.
Asymptotic speed
Theorem (Bérard and Maillard 2014)
If $\mathbb{E}[X]<\infty, \quad \lim _{n \rightarrow \infty} \frac{X_{N}^{(N)}(n)}{n}=v_{N}$ where $v_{N} \sim c_{\alpha} N^{1 / \alpha}(\log N)^{1 / \alpha-1}$ as $N \rightarrow \infty$.
If $\mathbb{E}[X]=\infty$, cloud of particles accelerates.
Genealogy
Theorem (P., Roberts, Talyigás 2021)
Sample k particles at a time $t \geqslant 4 \log _{2} N$.
The genealogy on a $\log N$ timescale is approximately given by a star-shaped coalescent when N is large.

