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Branching - selection systems :

• Particle systems : particles branch and move in space .

Killing rule keeps number of particles constant .

• Toy models for a population under selection .

Location of a particle f- individual ) represents its evolutionary fitness .

• Introduced by Brunet and Derrida in 1990s
.

Recent results and lots of open conjectures about long - term behaviour .

Overview :

1. N - particle branching Brownian motion (N - BBM)
and related free boundary problem

My
2. Brownian bees - long- term behaviour ☒B HIM

3. N - particle branching random walk
Results and conjectures about long-term behaviour

.

Focus on probabilistic ideas in proofs + how use PDE results .



N - particle branching Brownian motion (N - BBM )

• N particles move in R according to independent
Brownian motions

.

• Each particle , independently , branches into two time

particles after an Exp (1) time .

• Each time a particle branches , the leftmost
particle in the system is killed .

N particles in the system at all times. Mo Ho Ho Ho Ho
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N - particle branching Brownian motion (N - BBM )
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N - particle branching Brownian motion (N - BBM )
5 3 58 of

• N particles move in R according to independent 8808 Ho Ho Ho Ho
Brownian motions

. 38 got §zÉzE
• Each particle , independently , branches into two time GHB Ho Ho 8808 Ho
particles after an Exp (1) time . gÉzngf of

• Each time a particle branches , the leftmost
*¥Ñ% 0808 Ho Ho Ho

particle in the system is killed . { 33 of
N particles in the system at all times. Ho Ho Ho Ho Ho

Introduced by Maillard 12012) . Natural continuous- time analogue of discrete-time processes introduced
by Brunet and Derrida (19977 .

Toy model for a population under natural selection .

Position of a particle on IR represents evolutionary fitness .

Individuals with lowest fitness are killed.

Want to understand long- term behaviour for large N ( speed + shape of cloud of particles , genealogies)

One tool : over a fixed timescale , as N→a , density converges to solution of a free boundary problem .



Notation ✗'
N' (f) = (✗ in> (t) , . . .

,
✗
'F' (t)) particle positions at timet.LI= min

i. { , , . . . ,n}
✗HH ) leftmost particle position at time t .

Free boundary problem
Given a probability density uo : R→R+ , find a pair (ult , x) , 4) that solves

On

☒
= 1-2 Du tu for t > 0 , oc > ↳

ult , 4) = 0 for t> 0
(FBP { Jiya ,g)dy= I for t> 0

Lt
UCO, Oc) = uotx) for ✗ER .

A unique solution exists ( Berestycki , Brunet , P .

2019) .

It turns out that for large N
,

ult ,x)x density of particles at x at time t a bingo
'

nzf# {particles in (x -8.x+8) at time t}
↳ a position of leftmost particle at time t = LIM

t .

Why do we get this FBP?
On

• For x > ↳ a UY , particles • move according to BMS of
= 1-2 Out u

• branch into two particles at rate I
• At ✗ = L'¥2 Lt , particles are killed , so ult , 4-7=0 .

• Total number of particles = N
, so fIyCt , g) dy = I .
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Notation ✗'
N' (f) = (✗ in> (t) , . . .

,
✗
'F' (t)) particle positions at timet.LI= min

i. { , , . . . ,n}
✗HH ) leftmost particle position at time t .

Free boundary problem
Given a probability density uo : R→R+ , find a pair (ult , x) , 4) that solves

on

☒
= 1-2 Out u for t > 0 , oc > ↳

ult , 4) = 0 for t> 0
(FBP1) ~y{ Fact ,g) dy = 1 fort> 0

Lt
Lt

UCO, Oc) = uotx) for XE R .

Hydrodynamic limit

Theorem (De Masi , Ferrari , Presutti , soprano - Loto 2017) suppose ✗ in > (O) , . . .

,
✗ 'F' (o) are i. i. d. with density

Uo .
Then for XEIR , t > 0 , or

In # { is N :X!Ylt)> x} → fact > g) dy a.s
. as N→ x

.

0C

Earlier result : Durrett + Remenik 12011) . Hydrodynamic limit of a branching - selection system in continuous
time .

New particles jump from location of parent after branching . Leftmost particle killed .

Main proof idea : on short time intervals , sandwich N-BBM between two processes that are easier to control .



Proof of hydrodynamic limit result

Notation

Branching Brownian motion (BBM) : particles move according to independent BMS
branch into two particles at rate 1 .

✗
+
(f) = (✗Fct) , . . .

,
✗Tn; (t )) locations of particles at time t .

(ordering not important - could use 01am - Harris)

Htlt , x) : = In# { is Nf : ✗Ict)> x} = f-# { particles in BBM > x at time t} .

N - BBM
.
✗
'N'
(f) = (✗Y'Lt) , . . . , ✗Ht)) locations of particles at time t.

Ordering : at time 0
, particles are labelled 1,2 , . . . , N .

When particle with label j branches , if leftmost particle has label k then the two new particles are

given labels j and K ( if j=k then nothing happens ) .

Labels don't change between branching events .

H'Nkt , x) : = f-# { is N : ✗ im(f) > x} = f-# {particles in N - BBM > x at time t} .



Proof of hydrodynamic limit result

Htlt , x) : = In# { is Nf : ✗Ict)> x} = f-# { particles in BBM > x at time t} .

H'Nkt , x) : = f-# { is N : ✗ im(f) zoo} = f-# {particles in N - BBM > x at time t} .

Lemma (upper bound coupling For any ✗= (X, ,
. . . ,Xn) c- IRN , there exists a coupling of the BBM (✗+(t ) , t > 0)

and the N - BBM (✗ 'N' (f) , t > 0) such that under the coupling ,

✗IN
> (o) = ✗ = ✗+(O) and HIM Lt , x) s Ht (tpc) Ht> 0 , ace R .

Proof : Particle system consisting of red and blue particles .

At time 0
, particle configuration is given by ✗ ,

and all N particles are blue .

Particles move according to independent Bms and branch at rate 1 .

When a blue particle branches , the two offspring particles are coloured blue, and the leftmost blue particle in
the system is coloured red

.

When a red particle branches , the two offspring particles are red .

The blue particles form an N - BBM and the whole system of particles forms a BBM .

Under this coupling ,
# { is N : XY

'

(t ) > x } s# { is NE : ✗Elt) > x } .
☐

.



Proof of hydrodynamic limit result

Htlt , x) : = In# { is Nf : ✗Ict)> x} = f-# { particles in BBM > x at time t} .

H'Nkt , x) : = f-# { is N : ✗ IN' (f) zoo} = f-# {particles in N - BBM > scat time t} .

Notation : For ✗c- IRM
,
✗

'
c- Rm

'

,
write ✗ 7 X

'

iff

I✗n[x , a) I > IX
'
n Gc , a) I V-x-c.IR iff m> m

'
and I permutation o of {1 , . . . ,m} sit .

✗
oci,
> ✗

'

i
ltism!

Lemma (Lower bound coupling) suppose ✗c- RN, ✗
+ ERM and ✗> ✗+

.

There exists a coupling of the N - BBM (✗ '
N'

(t) , t > 0) and the BBM (✗
+

(f) , t > 0) such that under

the "4°""9 >

✗
(Nyo) = ✗ ,

✗ 1- (o) = xt
,
and for t> 0 , Hlmlt , x)> Ht (Tpc) Voce IR if NÉ ← N .

f.
t #particles in BBM at

Proof : Let c-it = ith branching time in ✗
+
.

timetiff✗
'N'(f) 3 ✗

+
(f)

Claim : For ✗c- RN, ✗
+
c- Rmt with ✗7. ✗

+

,
can couple (✗'

n'

(t ) , t > 0 ) and (✗
+
(f) , t > 0) in such a way that

✗
'N' (O) = ✗ ,

✗+(o) = ✗
+
and ✗

'N' (f) 7 ✗+ (t) Ht c- { [0,4--1] if 1×+1 < N
l [0 , TI ) if 1×+1 = N .

Assuming the claim , get the result by applying the claim successively on time intervals [0,9-+1 ,
[TE,TE] , . .

.

> GI
-
m.tn?m+1) .



Proof of hydrodynamic limit result

Claim : For ✗c- RN, ✗
+ ERM with X> ✗

+

,
can couple (✗'

n'

(t ) , t > 0 ) and (✗
+
(f) , t > 0) in such a way that

✗
'N'6) = ✗ ,

✗+(o) = ✗
+
and ✗

'N' (f) 7 ✗+ (t) Htc { [0,9--1] if 1×+1 < N
I [0 , TI ) if 1×+1 -_ N

.

Proof of claim : Assume (by reordering) Xi > ✗it this m .

Let Ti = ith branching time in ✗ IN
'

ji = index of particle that branches at time ti
ki= index of leftmost particle at time to- .

Couple branching times so TÉ=ti+ ,
where it = min { i > 1 : jism } .

Couple BMS up to time Tj. Let (BiH ) ,t> 0) for is N be i. i. d. BMS starting at 0 .

Let ✗ 'Y' (f) = ✗ it Bill) tats ,
is N

,

✗E. (t) = XE + BiH) tats , is m , so for ism ,
✗ in > (t) > ✗Ict) Ht < t,
⇒ ✗

'N' (f) 7 ✗+ (t) ft <Ty .

At time Ty , if t,# TI ( i. e. if jy> m), for is N , ✗ IN>

(E) = {
✗in Lte) i # ks

- ✗IT #-) i=k±
so for ism ,

✗ IN> (4)7 ✗ IN>%-) > X.tk#--XI(ts7 .
Hence ✗ '

N'
(E) I ✗+ (E) .

Same construction on [9,1-2] , . . .

, [tis , ,Ti+) ⇒ ✗IN> (E) 7 ✗ E. (E) for t< tf , is m
⇒ ✗

'N' (f) 3 ✗+(t ) for t<c-I . Now assume m< N
.

At time c- : = TI , particle jt :=ji+ branches in BBM and N - BBM
,
and particle Kt :=ki+ is killed in N - BBM

.

For Ksm
,
Kkk's ✗

'L' (t ) = ✗¥1T - ) > ✗£1T -7
So ✗

'N'
(c-E) 7. ✗

+
(TI) . ☐

.

✗+ (t ) , each sa
and ✗T.cn -- ✗¥-0 -1>-1%+0--1 . } ? Lie

in #me ,If ktsm ,
✗1m¥ , (t ) > ✗£71T -1 > ✗£+1T -1 .



Proof of hydrodynamic limit result

For f : R→R and me R, let Cmflx)= min /8th , m) OCEIR
.

"

cut
"

Fort> 0 and 8 : R→R ,
let Gtgtx> = Ex [ g(Be)]= §

' -
""S"

- •
2.*

e
" 8 (g) dy XER

.

"

spread
"

Take c> 0 small and t> 0 fixed .
Take N large . N

Take ✗c- RN and let v9' (g) = -1m¥
,

#
✗⇒ y

.

Then Gtvon> (a) = f-[ Px( Xi > Bt) .

i=1

N

If ✗+0)=✗ then w.h.pe .

, H+(t,x)=- Eet Px :( Bt > x) + 01N
-

c) = et citron
> (⇒ +01N

"

) V-x-c.IR
.

N i =L

By upper bound coupling, if ✗
'N'
G)=X

,
Hon> Ct ,x)sC±H+(t >⇒ s G-et Gerow>Gc) +01N-9V-x-CRW.h.pt

where ✗+10)=X

By lower bound coupling , if ✗
'N'6)=X

,
then letting ✗

+
(O) = ✗

+
= the N(e-

t
- N -9 rightmost particles in ✗

(so ✗ Text and
f-

'

×;>✗
= Ceo ,µcvd%c) )

c- =L

if Nts N then Hlmlt >x) > Htlt , a) 3 etatce-t-N-cvoMGG-OCN-9V-xw.h.pt
this happens w.h.pe .

So for 8>0 Small
,

ed Ggcésvon>Gc) - 01N -c) s HMG> 005 G-écgvon>Gc) +01N" ) V-x-CRW.h.to .

Fort> 0 fixed , taking 6~N-ds.t.lt/8=n- IN , by iterating ,

(eiagce.es/nvoMGc)-O(N-d)sHM(n&,x)s(c1eiGgYvoMGc)tO( N - c") V-xw.h.pe .



Proof of hydrodynamic limit result
For f : R→R and me R, let Cmflx)= min 18th , m) ✗ C- IR

.

Fort > 0 and 8 : R→R ,
let 9+860 = Ex [ 81B£)]= f

'
e-
"¥+8 (g) dy xeR

.

- •
21T£

Fort> 0 fixed , taking 8~N-ds.t.lt/8=n- IN ,
(éGgCés)nvoMGc) - 01N

- c
"

) s Hcmlt , x) _< (C±éG g)
" VIN> Gc) +01N"

"

) V-xw.h.pe .

&

Lemma Let vk.sc)= fact > g) dy , where (a) L) solves (FBPI) with initial condition uo .

A 0C

Let vote)= Judy)dy .
Then for ne IN and 8>0,

✗ (Eagles )
"

votes ✓ (nor >00s (C ,
es Gg )

"

vote) Voce IR
.

I I
cut then grow/

Mass to the right
←

Grow/spread then cut.
of x in N- BBM withspread .

N''= " @
.
Grow/spread

Proof : Use Feynman- Kac formula . and cut at same time .

Lemma For vo : IR→ [0,1] , 8>0 and new ,HlCieGgYvo-leGgCe-sYvoH@sCerEtDCes-D.Proofi1.ll9s8-GggHa.sIlf - gll@ 4. éGgCe-s8= Ggescés 8
2. 11 Csf - G-glass 118 - gtb = Gcses 8 .

3. If 111-11*51 then 11908-811*5 max (es-1,1 - e-E) = of -1 .

Gg (Get Gg)
" 'c

,
eivo

So VK.esastvo-CEGsce-sivolla.SI/GesGslGeiGsF'vo-GslGesGsY-'voHa.
by 1-+3 f. by

1+2
+ 119g (Geico )"

'

Vo - (ÑoHa→

s es - I t ed" " / Ivo - C
,
es roll

@ scenes + 1) (es - 1) by 3 .
☐ .



Proof of hydrodynamic limit result
For f : R→R and me R, let Cmflx)= min 18th , m) ✗ C- IR

.

Fort > 0 and 8 : R→R ,
let 9+860 = Ex [ 81B£)]= F

'
e-
"¥+8 (g) dy xeR

.

- •
21T£

Fort> 0 fixed , taking 8~N-ds.t.lt/8=n- IN ,
(éGgCés)nvoMGc) - 01N

- c
"

) s Hcmlt , x) _< (Cees G g)
" VIN> Gc) +01N"

"

) V-xw.h.pe .

Lemma Let vk.sc)= fact > g) dy , where (a) L) solves (FBPI) with initial condition uo .:
&

Let vote)= Judy)dy .
Then for ne IN and 8>0,

✗ (Eagles )
"

votes ✓ (nor >00s (C ,
es Gg )

"

vote) Voce IR
.

Lemma For vo : IR→ [0,1] , 8>0 and new ,HlCieGgYvo-leGgCe-sYvoH@sCerEtDCes_nForNlarge.ifXfNYoh.i.X'T> (O) are ii. d. with density no ,

v8" Gc) =
✗inyo,>✗

XP ( ✗¥10) > a) = vote) V-xe.IR w.h.pe .

c-=L

So w.h.p.V-oc-C.IR ,
let Ggcés )^voEx) - o (1) s HMH , -04s (Georges )^vo(⇒ to (1)

Ss ss

v(n8,x)=v(t,x) V(nor >⇒ = Vlt >x) .



Long-term behaviour of N - BBM for large N

Asymptotic speed

4¥ = min ✗'Y' (f) .

1- deterministic an sit .
Iim L'¥

= an a. s
.

ISN t→ a t

and an→ VI as N→ @
.

N.B. Iim Max ✗Elt)
= a. s

.

+→ &
isn't

f

Selection principle
N→ a

N- BBM particle configuration solution u of FBP

at time t at time t

hydrodynamic
limit

Harris / t→ a f.→• ? Compactly
recurrence supported

11 initial condition

stationary distribution of µ → • Travelling wave solution
N- BBM particle configuration of FBP with speed FL
(viewed from leftmost particle) ? ? (minimal speed)

selection principle : both PDE and particle system
' select

'

the same travelling wave to determine

long-term behaviour.



Brownian bees

• N particles move in Rd according to independent
Brownian motions

.

t.HM.pa.t.HM.pro
• Each particle , independently , branches into two
particles after an Exp (1) time .

.

HH.MY

• Each time a particle branches , the particle in HAMMY
the system furthest from the origin is killed .

✗ Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through
connection with a free boundary problem .

Notation : ✗
'N'
(f) = (✗ (t)

,
. . . ,
✗Ict )) particle positions (in Rd) at time t .

µ
(N)

t
= max

ie { , , . . . ,n}
It ✗Y' (f) It maximum particle distance from 0 at time t .

+
It - It is Euclidean (lz) norm

lim MY = f 0Guess : is Iim const. ?
N→at→a [

•

°



Brownian bees swamper
• N particles move in Rd according to independent THG;µMm• thy
Brownian motions

. gone
i.im#AAB*a..BBas.mb. a.am/*H.Hdg.maao.Km..

• Each particle , independently , branches into two AHHHHMm
particles after an Exp (1) time . gnf .

T.tk#I.H.MaaaMm8kau.
§

• Each time a particle branches , the particle in T.%8BH.MY qq.g.4.am
the system furthest from the origin is killed .

✗ Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through
connection with a free boundary problem .

Notation : ✗
'N'
(f) = (✗¥>

(f)
,

. . . ,
Xlnmlt)) particle positions (in Rd) at time t .

µ
(N)

t
= Max

ie { , , . . . ,n}
11×74711 maximum particle distance from 0 at time t .

+
It - It is Euclidean (lz) norm

lim MY = f 0Guess : is Iim const. ?
N→at→a [

•

°



Brownian bees

gone

%aE.BH.dsai.am
• N particles move in Rd according to independent IMDB.is/GMmBhhg
Brownian motions

.

a.ir#&qHi.*BBaa.ag. a.am/aA.aaHI.Ha.ag.@tHa.
• Each particle , independently , branches into two gqak.be.ggparticles after an Exp (1) time .

.

aol.HH.am#pMm.Mm8kH.

• Each time a particle branches , the particle in %•Ñ%HM• qq.q.yq.ae
the system furthest from the origin is killed .

✗ Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through
connection with a free boundary problem .

Notation : ✗
'N'
(f) = (✗

'Y' (f) , . . . ,
Xlnmlt)) particle positions (in Rd) at time t .

µ
(N)

t
= Max

ie { , , . . . ,n}
11×74711 maximum particle distance from 0 at time t .

✗
It - It is Euclidean lez) norm

lim MY
'
= f 0Guess : is Iim const. ?

N→at→• I
•



Brownian bees

gone

%aE.BH.dsai.am
• N particles move in Rd according to independent IMDB.is/GMmBhhg
Brownian motions

.

a.ir#&qHi.*BBaa.ag. a.am/aA.aaHI.Ha.ag.@tHa.
• Each particle , independently , branches into two gqak.be.ggparticles after an Exp (1) time .

.

aol.HH.am#pMm.Mm8kH.

• Each time a particle branches , the particle in %•Ñ%HM• qq.q.yq.ae
the system furthest from the origin is killed .

✗ Euclidean distance
N particles in the system at all times.

Can determine long-term behaviour for large N through
connection with a free boundary problem .

Notation : ✗
'N'
(f) = (✗

'Y' (f) , . . . ,
Xlnmlt)) particle positions (in Rd) at time t .

µ
(N)

t
= Max

ie { , , . . . ,n}
11×74711 maximum particle distance from 0 at time t .

✗
It - It is Euclidean lez) norm

lim MY
'
= f 0Guess : is Iim const. ?

N→at→• I
•



Brownian bees a.t.H.H.ik.H-a.am
• N particles move in Rd according to independent hahahaask.IM#HMmMm.Mmhhg
Brownian motions

. goofy
aol.H.EH-a.mi.8.at#:•¥%Bgf¥%z¥☒É•¥

Mr. :•:%M#M%•a.aa.%↳
• Each particle , independently , branches into two

•

a.am/.AT.HMa.maa8Em..particles after an Exp (1) time .

§
• Each time a particle branches , the particle in T.tl#BHMMaoa.a.IG.f..nl#gHm.Mo.Mg.Gatau.
the system furthest from the origin is killed .

53✗ Euclidean distance a.briber t.km.T.am
N particles in the system at all times.

Can determine long-term behaviour for large N through
connection with a free boundary problem .

Notation : ✗
'N'
(f) = (✗

'I' (f) , . . . ,
Xlnmlt)) particle positions (in Rd) at time t .

MINI
t
= Max

ie { , , . . . ,n}
ANY (f) It maximum particle distance from 0 at time t .

+
It - It is Euclidean lez) norm

Guess : is lim lim

N→at→•
MY

'
= f o

const.
I
•

?



Free boundary problem
Given an initial probability measure po on Rd

, find a pair fact , x) , Rt) that solves
du

of
= £Out u 11×11 < Rt , t> 0 gu=0
ult >00=0 110417 Rt >

t > 0
,

-

'

(FBP2){ .

-

'

Rtf ult >⇒ doc = I t> 0

11041s Rt

ult >⇒ doc → poldx) weakly as two .

Theorem ( Berestycki , Brunet, Nolen , P. 2020) For any Borel probability measure pro on Rd , there is a

unique solution (a > R) to (FBP2) .
Moreover

,
t l→ Rt is continuous on (0 , x) .

Write Brtx) : = { ye Rd : Hoc - yl / < r} .

It turns out that for large N
, ult ,⇒ a density of particles at x at time t

"

=

"

fim.ol-nvoypf.co,, # {particles in Bg (o) at time t} .

Rtx largest particle distance from oc at time t = Mcm
t .

Why do we get this FBP? For 11041 < Rt IM , particles move according to Bms 87=1-2Out a
branch into two particles at rate 1

At distance Rtx MI
'

from 0
, particles are killed , so act > 09=0 .

Total number of particles = N , so fact , doc = 1
.

11041s Rt



Hydrodynamic limit

Notation : poult > doc)= In ⇐ 8
✗g)(f) (

dx) empirical measure of particles at time t .

Theorem ( BBNP) suppose po is a Borel probability measure on Rd , and

• ✗ in > (O) , . . . > ✗ if
>
(O) are i. i. d. with distribution pro

• (u , R) is the solution of (FBP2) with initial condition pro .

Then for any t> 0 and any
measurable As Rd

,
almost surely

pink > A) → fact >x) doc and MY
>
→ Rt as N→ a.

A

Brownian bees
solution of FBP

µlM(t , doc) N→ a Cult;)> Rt)



Long- term behaviour of FBP solutions

Let (Ubc) , Ra) be the unique solution to

-Date)= Utx) 11041 < Ra

Utc) > 0 Hock < Rao

Ubc)=O 11041 > Ra

f Utc) doc =L
{
xodkR•

Theorem (BBNP) For any initial Borel probability measure po , the solution (a)R) of (FBP2) satisfies
Iim Rt = Ra and Lim Hult , . ) - Ul. )H•=O .

+→ a +→a

Brownian bees

µlM(t , doc)
Solution of FBP

N→ a Cult;)> Rt)

C-→ a

steady state
solution (U, Rao)



stationary distribution

Theorem (BBNP) The process (✗
'N'
(t) ,t> 0) has a unique invariant measure itln?

which is a probability measure on ( Rd)!

For any initial particle configuration , the law of ✗
'N' (f) converges in total variation

norm to it
'M

as t→ a. In particular , for Cs (Rd)N measurable
,

p( ✗ '
N'
(f) e C) → it'm (C) as 1-→ a.

Brownian bees

µlM(t , doc)
Solution of FBP

N→ a Cult;)> Rt)

+→ a
c-→ a

stationary
distribution item

steady state
solution CU ,Ra)



Selection principle

Theorem (BBNP) For e > 0 and As Rd measurable
,
as N→x

,

*
'N' ( { ✗ c- (Rd )

"

:/ f- §
,

#
✗ A

- §U(x)dx / > E } ) → 0

and *
'm( { ✗c- (Rd )N : 1 max

ie{ 1 , . . . >
N}

/ /✗ ill - Ra / > E } ) → 0
.

i. e. for N large , for (X , ,
. . .

> Xn)e (Rd )N with law ITM,

N

*⇐ ✗ieAIfUtx7dxandmaxHXillaR@w.h.p .

A ie {1 , - .

>
N}

Brownian bees

µlM(t , doc)
Solution of FBP

N→x Cult;)> Rt)

+→ a
c-→ a

N → a
stationary steady state
distribution it 'M solution (U ,R•)



Proof of hydrodynamic limit

Let F'Mlt > r) :=p
">
(Bio) > f) = f-# { ie { 1 , . . .

>N3://X.in
>

(f)Her } .

One - dimensional free boundary problem
Given Vo :[0 ,a)→ [0,1] measurable , find a pair (v4 > r) , Rt) such that

or

of
= 2- v -

d- 1 or

2r or
+ V t > 0

,
re (0, Rt)

vlt , r)=1 t> 0
,
r > Rt

(FBP3) { % It > 12+7=0 t > O

l v4 >0=0 t > 0

(
✓ (O >

• ) = V0

For N large , v4 ,r)~~ F'Mlt ,r) .

Proposition For any vo :[0, a) → [0,1] measurable, there exists a unique solution (v, R) to (1--13103).

Proposition Let volr)=µo( Br. (D) . Suppose (v , R) solves (FBP3) with initial condition vo , and

(a) E) solves ( FBP2) with initial condition pro . Then for t > 0 and r > 0
,

Rt = Ñt and vlt , D= f act > x) doc .

y
11×11 < r t

density at xproportion
within distance r of 0



Proof of hydrodynamic limit

Let F'Mlt > r) :=p
">
(Bio) > f) = f-# { ie { 1 , . . .

>N3://X.in
>

(f)Her } .

One - dimensional free boundary problem
Given Vo :[0 ,a)→ [0,1] measurable , find a pair (var) , Rt) such that

or

of
= 2- v -

d- 1 or

2r or
+ V t > 0

,
re (0, Rt)

vlt , r)= I t> 0
,
r > Rt

(FBP3) { % It > 12+7=0 t > O

l v4 >0=0 t > 0

(
v10 , • ) = V0

Notation : For odn
>
c- (Rd )N

,
write Poon , ( • ) = PC . I ✗ 'N' (o ) = sdm) .

Proposition (one-dimensional hydrodynamic limit) There exists c,
> 0 such that for N sufficiently

large , for t > 0 and xcn> c- ( Rd)N,

Podn , ( sup I Flmlt , r) - vlM(t,r) / > eft N
-

%) set N-1-9 ,
r > 0

where (v 'm, R
'M
) solves ( FBP3) with ↳ (r ) = For

>
(o , r) .

← so under Pxcn) >

vo(r)='n-É
,

#
pod?Ikr

Proof : Similar to N - BBM - upper and lower bound couplings .



Proof of hydrodynamic limit

coupling with d- dimensional BBM : (✗ Ict) , is NF) particle positions at time t in BBM .

For Os Sst and is NI , ✗% (s) := position of time- s ancestor of particle labelled i at time t .

Couple so Ht ✗ (Nlt) c- ✗+ (t)
,
and

✗
'N'
(f) = { ✗ Ict ) : is NI , 11 ✗ I,G) 11s MY Hse [Qt] } .

Assumptions for d-dimensional hydrodynamic limit result :

suppose µo is a Borel probability measure on Rd , and
• ✗Y'6) , . . .

,
✗IN>
(O) are i. i. d. with distribution po

• (u , R) solves (FBP2) with initial condition po .

Let (v > R) solve (FBP3) with initial condition volr)=µo(Brlo)) .

Proposition There exists cz> 0 such that for any 0<4 < T, for N sufficiently large ,

P( Fte ftp.T] : MY
'
> Rt + g) s N

- t -↳
.

Proof : Step I Fcz> 0 S.t. for N sufficiently large > for t > 0 ,

PC 11 For
>
It , • ) - v (t , • 711

•
z e
"
N
-

G) set N
- l - C
?



Proof of hydrodynamic limit

suppose pro is a Borel probability measure on Rd , and
• ✗'YCO) , . . .

,
✗IN>
(O) are i. i. d. with distribution po

• (u >
R) solves (FBP2) with initial condition po .

Let (v > R) solve (FBP3) with initial condition volr)=µo(Bro)) .

Proposition There exists cz> 0 such that for any 0 < yet , for N sufficiently large ,

P( Fte [y ,T] : MEN
'
> Rt + g) s N

- 1-↳
.

Proof : Step I Fcz> 0 S.t. for N sufficiently large > for t > 0 , ⇒ For > Lt , Rt) ✗ v4 >Rt)

P( 11 For
>
It , • ) - v Lt , • 711oz eft N

-

G) set N
- l - C
? w.h.pe .

= 1

Proof of step 1 :

Let ( von' , Ron
'

) solve (FBP3) with initial condition VIN' (r ) = For> (Osr) .
Then

11 FIN
>

Lt , • ) - v4 , . >Has 11 F'Mlt , • ) - vlMCti7H@tHvlMCt.o ) - vlt , • ) / I
•

.

9 I
use one - dimensional use that I/ von>Ct , . ) - v6 , • 711

@

set LIVIN' - roll@
hydrodynamic limit

= et sup / F'% ,r) - µo(Br(ODI
r >0

+ quantitative Glivenko - Cartelli theorem .



Proof of hydrodynamic limit

suppose pro is a Borel probability measure on Rd , and
• ✗'YCO) , . . .

,
✗IN>
(O) are i. i. d. with distribution po

• (u , R) solves (FBP2) with initial condition po .

Let (vs R) solve (FBP3) with initial condition volr)=µo(Bro)) .

Proposition There exists cz> 0 such that for any 0<4 < T, for N sufficiently large ,

P( 1- te [y ,T] : MY
'
> Rt + g) s N

- 1-↳
.

Proof : Step 1 Fez> 0 S.t. for N sufficiently large > for t > 0 ,

( HF
"> (t , • ) - v (t , .gl/a.ze2tN-cz ) see µ

- , -↳

⇒ F'"H > Rt) ✗ v4 >Rt)

G. hip .

= I
1

Step 2 Let E-- N
-↳ 1? For N sufficiently large , for te [Ost] ,

P( ISE [E >
ZE] : Mf% > Rtt E

"3) s 2.et N
- t -↳

.

Proof of step 2 : suppose For> Ct , Rt) > 1- eft N
-↳ ( happens w.h.p.by Step 1) .

Then w.h.io .

• by time ttE, the particles in BRIO ) at time 0 have > N descendants in the BBM

• on the time interval [t.tt24 , no particles in the BBM move more than distance § ÉB
from their time-t ancestor's position .

⇒ µ
(N )

c- + s*<_ Rt +§
"3
some s*E [0,2]



Proof of hydrodynamic limit

suppose pro is a Borel probability measure on Rd , and
• ✗'YCO) , . . .

,
✗IN>
(O) are i. i. d. with distribution po

• (u , R) solves (FBP2) with initial condition po .

Let (v > R) solve (FBP3) with initial condition volr)=µo(Bro)) .

Proposition There exists cz> 0 such that for any 0<7 < T, for N sufficiently large ,

P( Fte [y ,T] : MY
'
> Rt + g) s N

- 1-↳
.

Proof : Step I Fcz> 0 S.t. for N sufficiently large > for t > 0 ,

( HF
"> (t , • ) - v (t , .gl/a.ze2tN-cz)sefN-1-c,

⇒ F'"H > Rt) ✗ v4 >Rt)

G. hip .

= I
1

Step 2 Let E-- N
-↳ 1? For N sufficiently large , for te [Ost] ,

P( ISE [E >
ZE] : M£% > Rt + E'B) s 2eTN

- l -↳
.

Apply step 1 with t= bee , for ke No , ks LITE] .

Since tts Rt is continuous on (0 , a) , we can take N sufficiently large that

Re ( Legs - 1) +
ÉB s Rt + y Htc [y ,T] .



Proof of hydrodynamic limit

Proposition There exists cz> 0 such that for any 0 < yet , for N sufficiently large ,

P( Fte [y ,T] : MY
'
> Rt + g) s N

- 1-↳
.

Proof of d- dimensional hydrodynamic limit :

claim Icy> 0 S.t. for t> 0 , 8>0 and AE Rd measurable
, for N sufficiently large ,

P( plmlt , A) - fact >⇒ doc > 8) s N
- l - C"

.

A

Then since µlM(t , A) = 1- µm(t , RdiA) and fact >⇒ doc = I - fact , x) Doc,
A Rd IA

P(µm(t , A) - fact ,x) does - 8) = P(plM(t , Rd\A ) - fact , a) doc > 8) S N
-1-4

A RNA

for N sufficiently large , by claim . So by Borel - Cartelli , a. s .

I pin> Lt , A) - fact , a) disc / < 8 and MY > Rt -8
'

for N sufficiently large .

A



Proof of hydrodynamic limit

Proposition There exists cz> 0 such that for any 0<4 < T, for N sufficiently large ,

P( Fte ftp.T] : MY
'
> Rt + g) s N

" - c
?

Proof of d- dimensional hydrodynamic limit :

claim Icy> 0 S.t. for t> 0 , 8>0 and AE Rd measurable
, for N sufficiently large ,

P( µ
'M Lt , A) - fact >⇒ doc > 8) s N

- l - C"

.

A

Proof of claim : For y> 0 and t > 0
,
let Eye = { ✗Ect) : is NÉ , 11 ✗ I.£6711s Rst y V-s-cfy.tt} .

If MY's Rst y Fse [got] then ✗ '
N'
(f) C- Eye .

So P(µCM(t , A) - fact >⇒ doc > 8)
A

s PCFSE [rpt] : MY > Rst y ) tpn-ley.tn At - fact , x) doc > G)
A

t
use Proposition use.li#tysoELn-lEy,tnAD--fu(tix)doc

A

and E[ (Tuley .tn At - Elin ten .tn At] )
"

] IN?



Long-term behaviour - free boundary problem

Recall (U , Ra) is steady state solution of (FBP2) .

Let Vlr)=fUGc)dx .

Then (V , Ra) is a steady state solution of (1--13103) .

llxlkr

Proposition For c > O , K> 0 and E> 0 , there exists tg=te(c,K)E(0,0) such that

if Vo :[0 ,a)→ [0,1] is non- decreasing with rock ) > c and (vs R) solves (FBP3)

with initial condition v0 then

lvct ,r) - Hr) / < E tr > 0 and / Rt - Rake Ht > te (f)

Proof : Step 1 Show (4) holds for (vs E ) and Cvt, Rt ) , where

• (vs RT solves (FBP3) with initial condition voir)=cr > K
• (rt> Rt) solves (FBP3) with initial condition v8 (r) --1 .

Step 2 Comparison principle : If vd" (r ) s v9> (r) Hr and (v0, R
"'t solves (FBP3) with

initial condition v8" (i= 1,2) then

v4 >(t.rs v12
> Lt , r) ft > 0 , r > 0 ⇒ Rt" > RF

)
ft > 0

.

For vo :[0,0> → [0,1] non- decreasing with Volk ) > c , v5 (r) svolr) svotcr) fr> 0 ,
so v

-

(t.rs v4 > r> s vtct ,r ) ft> 0 , r > 0 and RTs Rts RI Ht > 0 .



Long- term behaviour - Brownian bees

Theorem Take K> 0 and c> 0 . For E > 0 , for N > Nq and t > Toe , for an initial condition

odn> c- ( Rd )
"

such that FCNYO , K ) > c ,

Pxcn, ( sup / For
>

(t > r) - Vlr) / > e) < E
r >0

and Pain , 11M¥
'
- Rat > E) < E.

Proof : Assume wlog K is large and c is small
.
Fix T large , and take t> T.

Suppose F'NYT - T, K ) > c. Then

1. If N is large , w.h.p.FM
>

Lt , • ) a van> (T, • ) ,
where (v 'M, R

'M ) solves (FBP3) with ✓
☐ (r ) = For

>
(t -T, r ) ,

by Id hydrodynamic limit result .

2. If T is large , VCMCT, • ) I V1 . ) because Volk)= For
>

(t -T, K) > c.

So w.h.p.FM > It , . )~~ V1. ) . Hence STP :

claim For large S
,
For > (S , K) > c w

,

h
, p .



Long- term behaviour - Brownian bees

claim For large s , For
>
(S , K) > c w

,

h
, p . (Assuming K is large and c is small .)

f DntkProof of claim : Fix to> 0 .
Let Dn = min { ie No : For> (nto , Kti )> c } .

Lemma For ne INO and m> 0
, if Dns m then I

> CN

particles
P(Dn+ ,

> mtj / Into ) s 4d Neto e-
t%Gdto

V-j.IN .

Proof : Take n= 0 wlog .

t natural filtration

coupling with BBM . Suppose 11 ✗Elt ) - ✗ it, 6) 11<5 j V- te [0 > to] , is NE .

• Case 1 : If MEN
'
> Ktmttzj Hts to , then no descendants of particles

in Bk+m (O ) are killed by time to , so there are > CN particles in Bk+m+yzj(0)
at time to

.

• Case 2 : If MY! s Ktm +
'

gj for some t*s to , then at time t* , all surviving
particles are in Bk+m+yzj(0) , and for is Nfo ,

If Xtilto) - ✗ I.t.lt#)llsHX+i(to)-XI,eo(o)HtHXI,to(07-XI,to(t*)Hs43j ,
so all surviving particles are in Bk+m+j(O) at time to .



Long- term behaviour - Brownian bees

claim For large S
,
For > (S , K) > c w

,

h
, p . (Assuming K is large and c is small .)

f DntkProof of claim : Fix to> 0 .
Let Dn= min { ie No : For'(nto , Kti )> c } .

Lemma For ne INO and m> 0
, if Dns m then I

> CN

particles
P(Dn+ ,

> mtj / Into ) s 4d Neto e-
t%Gdto

V-j.IN .

t natural filtration

For to large , form> 0, if vo (Ktm) > c then if (v , R) solves (FBP3) ,

✓ (to >
Ktm - 1) 72C

.

So by Id hydrodynamic limit , if Dnsm , P( Dnt , > m - I / Fnto) ⇐ N
"

.

Use Lemma for j > ( log N )
"?

Can couple (Dn)I=o with a positive recurrent Markov chain (Tn)F=o in such a way

that Dns Yn th and P(Yn=O ) > 1- E for n large .

Then Yn=0 ⇒ Dn=O ⇒ For > (nto , K ) > c.



Barycentric Brownian bees L
.
Addario - Berry , J.

Lin
,
T

.
Tendron 2020

N particles in Rd moving according to Brownian motions and branching at rate 1 .

Each time a particle branches , the particle furthest from the centre of mass (barycentre)

of the system is killed .

Notation : ✗ '
N'
(f) = (✗4%7 , . . .

>
✗ if

>

(t)) particle positions at time t .

N

Ict) = f- E ✗¥1T) baryeentreat time t .
k= 1

Theorem ( Invariance principle) For N > 1
, I e- old > N) c- (o , a) S.t. as m→ a

,

( m
-42 I Itm) , 0Sts 1)

→d (o Bt ) costs I

w.int
.

Skorohod topology .

Conjecture For large N , at a large time t , for Ae Rd ,

f-# { is N : ✗
'Y' (f) - I (f) c- A } a futxdxw.hr p .

A



General d - dimensional N - BBM N
. Berestycki , L .

Z
.
Zhao 2018

F : Rd → R fitness function .

Fitness value of a particle at x is Flx) .

N particles in Rd moving according to Brownian motions and branching at rate 1 .

Each time a particle branches , the particle in the system with the lowest fitness value
is killed

.

Case FGC) = 11×11 Particles form a clump that moves away from 0 at a deterministic speed
in a random direction

.

Case Ftx) = <1.x> Particles form a clump that moves in direction 1 at a

deterministic speed .

Conjecture Hydrodynamic limit .

Let Me = {xe Rd : Floc) > l } .

Find (act ,⇒ ,
lct )) St .

Ou

of
= 1-2Out u t> 0

,
✗ C- Rect,

act ,⇒ = O t> 0
,
x ¢ Rect,

fact , x) doc = I t > 0

Rd
act , • )→ pro weakly as two



N - particle branching random walk (N - BRW )

Let ✗ be a real - valued random variable ( jump distribution)

N particles with locations in IR .

At each time ne No
,
each particle has two offspring .

Each of the 2N offspring particles makes an independent
jump from its parent 's location , with the same law as X

.

The N rightmost particles (of the 2N offspring particles) %•• €8B %••

form the population at time nt 1 .

Notation : ✗Y' (a) s ✗{Nws . . .
s ✗ (n) ordered particle positions at time n .

Asymptotic speed
✗
'Fln)If E- [X] < ✗ then Fvn c- (o , a) sit .

lim
n

= vn = Iim
✗ G)

a. s .
and

n→ a n→& n in E.

Theorem (Bérard and Gouéré 20107 If E[é×]< ✗ for some I> 0 (+ technical assumptions )
then linm→•Vn= Va exists and Va - Vn ~ cllogw )

"

as IN → &.

Conjectured by Brunett Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )



N - particle branching random walk (N - BRW )

Let ✗ be a real - valued random variable ( jump distribution)

N particles with locations in IR .

At each time ne No
,
each particle has two offspring .

¥89B ¥••%¥••% ¥•ñ%¥•¥¥•%Each of the 2N offspring particles makes an independent
jump from its parent 's location , with the same law as X

.

The N rightmost particles (of the 2N offspring particles) %•• %•• %••

form the population at time nt 1 .

Notation : ✗Y' (a) s ✗EYED E. . . s ✗ 'Tfln) ordered particle positions at time n .

Asymptotic speed
X'Fln)If E- [X] < ✗ then Fvn c- (o , a) sit .

lim
n

= vn = Iim
✗ G)

a. s .
and

n→ a n→& n in E.

Theorem (Bérard and Gouéré 20107 If E[é×]< ✗ for some i> 0 (+ technical assumptions )
then linm→•Vn= Va exists and Va - Vn ~ c(1ogN )

"

as IN → &.

Conjectured by Brunett Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )



N - particle branching random walk (N - BRW )

Let ✗ be a real - valued random variable ( jump distribution)

N particles with locations in IR .

At each time ne No
,
each particle has two offspring .

•¥%%a% %BaBBB.EE#aBBa. ¥•ñ%¥•¥%•%Each of the 2N offspring particles makes an independent
jump from its parent 's location , with the same law as X

.

The N rightmost particles (of the 2N offspring particles) %B• %•• %••

form the population at time nt 1 .

Notation : ✗Y' (a) s ✗{MEDS . . .
s ✗

'F' (a) ordered particle positions at time n .

Asymptotic speed
If E- [X] < ✗ then Fvne (o , a) sit .

Iim ×%k)
= vn = Iim

✗ G)
a. s .

and

n→ a n n→ a n in E.

Theorem (Bérard and Gouéré 20107 If E[é×]< ✗ for some i> 0 (+ technical assumptions )
then linm→•Vn= Va exists and Van - v n ~ c(1ogN )

"

as IN → &.

Conjectured by Brunett Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )



N - particle branching random walk (N - BRW )

Let ✗ be a real - valued random variable ( jump distribution)

N particles with locations in IR .

At each time ne No
,
each particle has two offspring .

•¥••%a% %Ba%BB.BG#aBBa.E%aB #e•¥%•%@.Each of the 2N offspring particles makes an independent
jump from its parent 's location , with the same law as X

.

The N rightmost particles (of the 2N offspring particles) %B• %•• %••

form the population at time nt 1 .

Notation : ✗Y' (a) s ✗EYED S . . .
s ✗LY (a) ordered particle positions at time n .

Asymptotic speed
If E- [X] < ✗ then Fvne (o , a) sit .

Iim ✗%k)
= vn = Iim

✗ G)
a. s .

and

n→ a n n→ a n in E.

Theorem (Bérard and Gouéré 20107 If tI[é×]< ✗ for some i> 0 (+ technical assumptions )
then liy→•Vn= Va exists and Van - v n ~ c(1ogN )

"

as IN → &.

Conjectured by Brunett Derrida 1997 .

Related result for Fisher - KPP equation with noise
(Mueller, Mytnik > Quastel 2009 )



Genealogy
Fix bee IN

. Sample be particles uniformly at random from the N particles at a large
time t

.

Trace their ancestry backwards in time
→

process (Pn)n?o of partitions of { 1
,

. . . ,k} Coalescent process

i and j in same block in Pn if common ancestor at time t - n .

I 2 3 4 5 Bolthausen - Sznitman coalescent

Merger rate of any given K- tuple of blocks = (k-27 ! (b - k) !
when b blocks in total (b- 1) !

Thanks to A. Wako /binger
and 9

. Kersting



Genealogy
Fix bee IN

. Sample be particles uniformly at random from the N particles at a large
time t

.

Trace their ancestry backwards in time
→

process (Pn)n?o of partitions of { 1
,

. . . ,k} Coalescent process

i and j in same block in Pn if common ancestor at time t - n .

I 2 3 4 5 Bolthausen - Sznitman coalescent

Merger rate of any given K- tuple of blocks = (k-27 ! (b - k) !
when b blocks in total (b- 1) !

Conjecture (Brunet , Derrida , Mueller , Manier)
If ✗ has exponential moments then the genealogy of a sample
on a ( logNP timescale converges to a Bolthausen - Sznitman
coalescent as N→x . (Also for N- BBM

.)

Berestycki , Berestycki , Schweinsberg : BBM with drift - ✓2- 2¥
"

(log N +310g log N '

particles killed if hit 0 .

Under suitable initial conditions
, population has size ~ N

.

Theorem sample particles at time t(logNP . After rescaling time by
2't

( log N)3
> genealogy

converges to Bolthausen - Sznitman coalescent as N→ a
.



N - BRW with heavy- tailed jump distribution

suppose P(✗ > a) ~ oil as x→x.

Asymptotic speed
Theorem ( Bérard and Maillard 2014)

If E[×] < ✗ , tim ✗¥1M
= rn where rn ~ c.

✗
N
"✗

( logNik
-1

as N→ a
.

n→x n

If E[X]=a , cloud of particles accelerates .

Genealogy
Theorem ( P.

,
Roberts

,
Tal gigas 2021 )

sample k particles at a time t > 4 logan .

The genealogy on a log N timescale is approximately given by a star-shaped coalescent
when N is large .

^

c- [ logan , 21092N]

✗

I o( logN )


