Multicoloured Matrices

Richard Anstee UBC Vancouver

University of Victoria, April 25, 2015

I have had the good fortune of working with a number of coauthors in this area: Farzin Barekat, Ruiyuan (Ronnie) Chen, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash, Christina Koch, Linyuan (Lincoln) Lu, Connor Meehan, U.S.R. Murty, Miguel Raggi, Lajos Ronyai, and Attila Sali.

Definition A matrix is called an r-matrix if the entries belong to $\{0,1, \ldots, r-1\}$.

Definition We say that a matrix A is simple if it is a matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
i.e. if A is an m-rowed simple 2 -matrix then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

$\|A\|=|\mathcal{A}|$
i.e. if A is an m-rowed simple 2 -matrix then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

$\|A\|=|\mathcal{A}|$
When we extend to r-matrices one possible interpretation is a set of divisors of $p_{1}^{r-1} p_{2}^{r-1} \cdots p_{m}^{r-1}$ where $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes.

Definition Given a matrix F, we say that A has F as a configuration written $F \prec A$ if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 2 & 2 \\
0 & 2 & 0 & 2
\end{array}\right] \prec\left[\begin{array}{llllll}
1 & 1 & 2 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 & 1 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 \\
2 & 0 & 2 & 2 & 0 & 0
\end{array}\right]=A
$$

Our Extremal Problem

Definition A matrix is called an r-matrix if the entries belong to $\{0,1, \ldots, r-1\}$.

Definition We say that a matrix A is simple if it is a matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
$\operatorname{Avoid}(m, r, \mathcal{F})=\{A: A$ is m-rowed simple r-matrix,

$$
F \nprec A, F \in \mathcal{F}\}
$$

Our Extremal Problem

Definition A matrix is called an r-matrix if the entries belong to $\{0,1, \ldots, r-1\}$.

Definition We say that a matrix A is simple if it is a matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
$\operatorname{Avoid}(m, r, \mathcal{F})=\{A: A$ is m-rowed simple r-matrix,

$$
F \nprec A, F \in \mathcal{F}\}
$$

forb $(m, r, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, r, \mathcal{F})\}$

Our Extremal Problem

Definition A matrix is called an r-matrix if the entries belong to $\{0,1, \ldots, r-1\}$.

Definition We say that a matrix A is simple if it is a matrix with no repeated columns.

Definition We define $\|A\|$ to be the number of columns in A.
$\operatorname{Avoid}(m, r, \mathcal{F})=\{A: A$ is m-rowed simple r-matrix,

$$
F \nprec A, F \in \mathcal{F}\}
$$

forb $(m, r, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, r, \mathcal{F})\}$

$$
\leq r^{m}
$$

Fundamental Result

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible (0,1)-columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

The Great Divide

Theorem (Füredi, Sali 12) Let \mathcal{F} be a finite family of r-matrices. 1. If for every pair $i, j \in\{0,1, \ldots, r-1\}$ there is some $F \in \mathcal{F}$ with all entries in F restricted to i or j, then forb (m, r, \mathcal{F}) is a polynomial in m.
2. If for some pair $i, j \in\{0,1, \ldots, r-1\}$ there no $F \in \mathcal{F}$ with all entries in F restricted to i or j, then forb (m, r, \mathcal{F}) is $\Omega\left(2^{m}\right)$.

Extensions to r-matrices

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible (0,1)-columns on k rows.
It is attractive to consider a family \mathcal{F} of matrices which is symmetric under permutations of the symbols. Let S_{r} denote all permutations σ of the symbols and let $\sigma(A)$ denote the matrix obtained by replacing each entry $a_{i j}$ of A by $\sigma\left(a_{i j}\right)$. Define

$$
\operatorname{Sym}(F)=\left\{\sigma(F): \sigma \in S_{r}\right\}
$$

Note that if F has two different entries $\{a, b\}$ then $\sigma(F)$ has two different entries $\{\sigma(a), \sigma(b)\}$

Theorem (Füredi, Sali 12) forb $\left(m, r, \operatorname{Sym}\left(K_{k}\right)\right)$ is $\Theta\left(m^{(k-1)\binom{r}{2}}\right)$.

Let σ be a permutation of $\{0,1, \ldots, r-1\}$ with $\sigma(0)=0$ and $\sigma(1)=2$.

$$
\sigma\left(K_{2}\right)=\left[\begin{array}{llll}
0 & 0 & 2 & 2 \\
0 & 2 & 0 & 2
\end{array}\right] \prec\left[\begin{array}{llllll}
1 & 1 & 2 & 2 & 0 & 0 \\
1 & 0 & 0 & 2 & 1 & 2 \\
0 & 1 & 0 & 1 & 2 & 0 \\
2 & 0 & 2 & 2 & 0 & 0
\end{array}\right]
$$

A Product Construction

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
3 & 2 & 2 \\
2 & 3 & 2 \\
2 & 2 & 3
\end{array}\right] \times\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Given p simple r-matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple r-matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

A Useful Construction

Let $p=\binom{r}{2}$.
Let F be a simple $(0,1)$-matrix with no constant row.
Let $t=\mathrm{forb}\left(m / p,\left\{F, F^{c}\right\}\right)$.

A Useful Construction

Let $p=\binom{r}{2}$.
Let F be a simple $(0,1)$-matrix with no constant row.
Let $t=\mathrm{forb}\left(m / p,\left\{F, F^{c}\right\}\right)$.
Let $A_{m / p}(0,1)$ denote the $m / p \times t$ simple $(0,1)$-matrix with no configuration F or F^{c}.
Let $A_{m / p}(i, j)=\sigma\left(A_{m / p}(0,1)\right)$, where $\sigma(0)=i$ and $\sigma(1)=j$, which has no configuration $\sigma(F)$ or $\sigma\left(F^{c}\right)$.

A Useful Construction

Let $p=\binom{r}{2}$.
Let F be a simple $(0,1)$-matrix with no constant row.
Let $t=\mathrm{forb}\left(m / p,\left\{F, F^{c}\right\}\right)$.
Let $A_{m / p}(0,1)$ denote the $m / p \times t$ simple $(0,1)$-matrix with no configuration F or F^{c}.
Let $A_{m / p}(i, j)=\sigma\left(A_{m / p}(0,1)\right)$, where $\sigma(0)=i$ and $\sigma(1)=j$, which has no configuration $\sigma(F)$ or $\sigma\left(F^{c}\right)$.
We form the $\binom{r}{2}$-fold product
$B=A_{m / p}(0,1) \times A_{m / p}(0,2) \times \cdots \times A_{m / p}(r-2, r-1)$.

A Useful Construction

Let $p=\binom{r}{2}$.
Let F be a simple $(0,1)$-matrix with no constant row.
Let $t=\mathrm{forb}\left(m / p,\left\{F, F^{c}\right\}\right)$.
Let $A_{m / p}(0,1)$ denote the $m / p \times t$ simple $(0,1)$-matrix with no configuration F or F^{c}.
Let $A_{m / p}(i, j)=\sigma\left(A_{m / p}(0,1)\right)$, where $\sigma(0)=i$ and $\sigma(1)=j$, which has no configuration $\sigma(F)$ or $\sigma\left(F^{c}\right)$.
We form the $\binom{r}{2}$-fold product
$B=A_{m / p}(0,1) \times A_{m / p}(0,2) \times \cdots \times A_{m / p}(r-2, r-1)$.
We verify that $\sigma(F), \sigma\left(F^{c}\right) \nprec B(F$ is simple, no constant row $)$.
Then forb $(m, r, \mathcal{S} y m(F))$ is $\Omega\left(t^{p}\right)$ i.e. $\Omega\left(\left(\text { forb }\left(m,\left\{F, F^{c}\right\}\right)\right)^{\binom{r}{2}}\right)$.

New Results

We consider 2-rowed (0,1)-matrices F. There are some cases where the bound is small.
Theorem Let $F=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then forb $(m, r, \operatorname{Sym}(F))=r$.
Proof: The only possible columns are the r constant columns.■

New Results

We consider 2-rowed (0,1)-matrices F. There are some cases where the bound is small.
Theorem Let $F=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then forb $(m, r, \operatorname{Sym}(F))=r$.
Proof: The only possible columns are the r constant columns.■

$$
\text { Let } F_{p}=\left[\begin{array}{lllllll}
0 & \overbrace{0} & \cdots & \cdots & 0 & 0 & 11 \\
0 & 1 & \cdots & \cdots & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Ferguson, Sali 01) Let p be given. Then forb $(m, 2, F)=p m-p+1$ i.e. forb $(m, 2, F)$ is $\Theta(m)$.
Theorem (A., Sali 15) Let p be given. Then forb $\left(m, r, \mathcal{S} y m\left(F_{p}\right)\right)$ is $O\left(m^{\binom{2}{)} \text {. }}\right.$

Let

$$
H=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Theorem (A., Barekat, Sali 11) forb $(m, 2, H)=4 m$.
Note that H is a maximal case for 4-rowed configurations that yield a linear bound.
Theorem (A., Sali 15) forb $(m, r, \operatorname{Sym}(H))$ is $\Theta\left(m^{\binom{r}{2}}\right)$.

Induction

Given c^{\prime}, there exists a c so that

$$
c(m-1)^{t}+c^{\prime}(m-1)^{t-1} \leq c m^{t}
$$

Induction

Let A_{m} be an m-rowed simple r-matrix with $F \nprec A$ for $F \in \mathcal{F}$.

$$
A_{m}=\left[\begin{array}{cccc}
00 \cdots 0 & 11 \cdots 1 & 22 \cdots 2 & \cdots \\
B_{0} & B_{1} & B_{2} & \cdots
\end{array}\right]
$$

Let A_{m-1} denote the simple r-matrix obtained from [$B_{0} B_{1} B_{2} \cdots$] and for pair (a, b), let $A_{m-1}(a, b)$ denote the columns that are common to both B_{a} and B_{b}.

$$
\left\|A_{m}\right\| \leq\left\|A_{m-1}\right\|+\sum_{a, b \in\{0,1, \ldots, r-1\}}\left\|A_{m-1}(a, b)\right\|
$$

If we can show that $\left\|A_{m-1}(a, b)\right\| \leq c^{\prime}(m-1)^{k-1}$ for all m, then there exists a c so that $\left\|A_{n}\right\| \leq c n^{k}$ for all n.
We have that $F \nprec A_{m}$ for $F \in \mathcal{F}$ and so if $F \prec\left[\begin{array}{cc}a, \cdots a b b \cdots b \\ F^{\prime} & F^{\prime}\end{array}\right]$, then for pair $(a, b), F^{\prime} \nprec A_{m-1}(a, b)$.

Induction

If there exists a $c^{\prime \prime}$ so that matrices $A_{m-d}(a, b)$ at depth d have $\left\|A_{m-d}(a, b)\right\| \leq c^{\prime \prime}$, then $\|A\|$ is $O\left(m^{d}\right)$.

Some typical configurations are $I_{k}(a, b)$ and $T_{k}(a, b)$:

$$
I_{4}(a, b)=\left[\begin{array}{llll}
b & a & a & a \\
a & b & a & a \\
a & a & b & a \\
a & a & a & b
\end{array}\right], \quad T_{4}(a, b)=\left[\begin{array}{cccc}
b & b & b & b \\
a & b & b & b \\
a & a & b & b \\
a & a & a & b
\end{array}\right]
$$

Some typical configurations are $I_{k}(a, b)$ and $T_{k}(a, b)$:

$$
\begin{array}{ll}
I_{4}(a, b)=\left[\begin{array}{llll}
b & a & a & a \\
a & b & a & a \\
a & a & b & a \\
a & a & a & b
\end{array}\right], & T_{4}(a, b)=\left[\begin{array}{llll}
b & b & b & b \\
a & b & b & b \\
a & a & b & b \\
a & a & a & b
\end{array}\right] \\
\mathcal{T}_{k}(r)=\underset{a, b \in\{0,1, \ldots, r-1\}}{\bigcup_{k}(a, b)} \quad \cup \bigcup_{a, b \in\{0,1, \ldots, r-1\}} T_{k}(a, b)
\end{array}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

This result has the spirit of Ramsey Theory.

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

This result has the spirit of Ramsey Theory.
Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

An Unavoidable Forbidden Family

Theorem (Balogh and Bollobás 05) Let k be given. Then

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{2^{k}}
$$

This result has the spirit of Ramsey Theory.
Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\text { forb }\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right) \leq 2^{c k^{2}}
$$

Definition $\mathcal{T}_{k}(r)=\bigcup_{a, b \in\{0,1, \ldots, r-1\}} I_{k}(a, b) \cup \bigcup_{a, b \in\{0,1, \ldots, r-1\}} T_{k}(a, b)$
Theorem (A., Lu 14) Let k be given. Then there is a constant c

$$
\text { forb }\left(m, r, \mathcal{T}_{k}(r)\right) \leq 2^{c k^{2 r}}
$$

The proof of the bound uses lots of induction and multicoloured Ramsey numbers: $R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right)$ is the smallest value of n such than any colouring of the edges of K_{n} with ℓ colours $1,2, \ldots, \ell$ will have some colour i and a clique of k_{i} vertices with all edges of colour i.

$$
R\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \leq 2^{k_{1}+k_{2}+\cdots+k_{\ell}}
$$

Linyuan (Lincoln) Lu

Another Divide

Theorem (A., Koch 13, A., Lu 14) Let \mathcal{F} be a finite family of r-matrices. Let ℓ be the largest number of rows or columns in any $F \in \mathcal{F}$.

1. If for every $G \in \mathcal{T}_{2 \ell}$ there is some $F \in \mathcal{F}$ with $F \prec G$, then forb (m, r, \mathcal{F}) is $O(1)$.
2. If for some $G \in \mathcal{T}_{2 \ell}$ there is no $F \in \mathcal{F}$ with $F \prec G$, then forb (m, r, \mathcal{F}) is $\Omega(m)$.

$$
\begin{aligned}
& \mathcal{T}_{k}(3) \backslash \mathcal{T}_{k}(2)= \\
& {\left[\begin{array}{cccc}
1 & 2 & \cdots & 2 \\
2 & 1 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & 2 & \cdots & 2 \\
2 & 0 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
0 & 2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
2 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],\left[\begin{array}{llll}
2 & 2 & \cdots & 2 \\
0 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & 2
\end{array}\right],\left[\begin{array}{cccc}
2 & 2 & \cdots & 2 \\
1 & 2 & \cdots & 2 \\
\vdots & \vdots & \ddots & \\
1 & 1 & \cdots & 2
\end{array}\right],} \\
& {\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
2 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & \cdots & 1 \\
2 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \\
2 & 2 & \cdots & 1
\end{array}\right] .}
\end{aligned}
$$

More asymptotically exact bounds

Theorem (A., Sali 15) Let \mathcal{F} be a family of (0,1)-matrices. forb $\left(m, r, \mathcal{T}_{k}(r) \backslash \mathcal{T}_{k}(2) \cup \mathcal{F}\right)$ is $\Theta($ forb $(m, \mathcal{F}))$.

Forbidding $\mathcal{T}_{k}(r) \backslash \mathcal{T}_{k}(2)$ is the same as restricting ourselves to $r=2$, the case of (0,1)-matrices, at least asymptotically.

More asymptotically exact bounds

Theorem (A., Sali 15) Let \mathcal{F} be a family of (0,1)-matrices. forb $\left(m, r, \mathcal{T}_{k}(r) \backslash \mathcal{T}_{k}(2) \cup \mathcal{F}\right)$ is $\Theta($ forb $(m, \mathcal{F}))$.

Forbidding $\mathcal{T}_{k}(r) \backslash \mathcal{T}_{k}(2)$ is the same as restricting ourselves to $r=2$, the case of $(0,1)$-matrices, at least asymptotically.

Theorem (A., Sali 15) forb $\left(m, r, \mathcal{T}_{k}(r) \backslash \mathcal{T}_{k}(2)\right)$ is $\Theta\left(2^{m}\right)$.
Theorem (A., Sali 15) forb $\left(m, r, \mathcal{T}_{k}(r) \backslash I_{k}\right)$ is $\Theta\left(m^{k-1}\right)$.

Thanks to Gary MacGillivray for organizing this conference!

