
GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS

ZOÉ HAMEL

March 3, 2016

1. Introduction

Let G = (V (G), E(G)) be a graph G (loops and multiple edges not allowed) on the set
of vertices V (G) and the set of edges E(G). The degree of a vertex i in V (G), degG(i), is
the number of edges of G incident with i. A subgraph F of G is a graph F = (V (G), E(F))
such that E(G) ⊆ E(F). This paper focuses on the following problem: given a graph G
on n vertices, does there exists a subgraph F of G such that the degree of the ith vertex is
given by the function f : V (G)→ Z via f(i) = degF (i) for all i = 1, 2, ..., n. This problem is
called the f -factor problem, and the subgraph of G satisfying the function f(i) = deg(i) is
an f -factor of G. We generalize these concepts to a general graph; a graph on which multi-
ple edges and loops are allowed. For example, a loop at i counts for 2 towards the degree of i.

Tutte’s f -factor theorem provides a characterization of general graphs for which a given
f -factor exists. Anstee gave an algorithmic proof of Tutte’s theorem to solve the f -factor
problem [2]. One goal of this paper is to give the details of Anstee’s paper in which he
combines a network flow approach and a graph theory approach in order to either find a
given f -factor or show that none can exist. Section 3 provides basic theory and results about
network flows necessary to understand how network flows are used.

For the purpose of this paper, it will be useful to think of a general graph G in term of its
adjacency matrix. We define λ(e), the multiplicity of an edge e = (i, j), as the number of
edges joining i and j in G. The adjacency matrix of G, denoted AG, is a matrix with rows
and columns labelled by the vertices of the graph, with entries λ(i, j) in position (i, j) off the
diagonal, and with entries 2λ(i, i) in position (i, i) on the diagonal. Note that any general
(undirected) graph has a symmetric adjacency matrix. Therefore, the adjacency matrix of
an f -factor F of G is a symmetric matrix with integral entries, ith row and column sums
equal to f(i), even entries on the diagonal, and satisfying 0 ≤ AF ≤ AG.

Let D(G) be the directed graph associated to a general graph G such that AG = AD(G) as
in the example in Figure 1. We define a directed f -factor to be a subgraph B of D(G).
Therefore, the adjacency matrix of a directed f -factor B has ith row and column sums equal
to f(i) for all i = 1, ..., n and satisfies 0 ≤ AB ≤ AG.

1

2 ZOÉ HAMEL

G D(G)

Figure 1. General graph G and its associated directed graph D(G).

Starting with a general graph G on n vertices and given a function f , we want to determine
whether G has an f -factor or not. We will solve this problem in two phases described in
details in Section 4. The first phase consists in looking for a directed f -factor in D(G). In
this first phase, network flows will be used in order find a directed f -factor or prove that
none exists. We will show that if D(G) doesn’t have a directed f -factor, then G cannot have
an f -factor. On the other hand, if D(G) has a directed f -factor, G may have an f -factor.

The second phase of the problem consists in trying to transform this directed f -factor B
into an f -factor of G. As noted earlier, AB already has ith row and column sum equal f(i)
and 0 ≤ AB ≤ AG. We need to transform AB into (1) a symmetric matrix (we will call this
a fractional f -factor), (2) with integral entries off the diagonal and (3) even entries on the
diagonal. During the transformations, we will have to preserve the row and column sums
and the inequality 0 ≤ AB ≤ AG. While making the matrix symmetric is straight-forward
and can always be done, obtaining integral entries on the diagonal and even entries on the
diagonal involves a relatively complex algorithm which will be specifically discussed in Sec-
tion 5. If using this algorithm we are unable to obtain an f -factor, we will prove in Section
6 that no f -factor can exist using Tutte’s characterization.

Section 7 generalizes our theorem to the (g, f)-factor problem and then specializes to the
1-factor problem. Section 8 describes the sparse substitute idea of Gabow. Section 9 gives
two applications of (g, f)-factors: one is related to the edge colouring problem and one about
graph decomposition.

2. Notations and definitions

Some of these definition will become clear when explained in context throughout the paper.

General graphs.

Graph G = (E(G), V (G)): A graph on the set of edges E(G) : {e : e ∈ E(G)} and
the set of vertices V (G) = {v : v ∈ V (G)}.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 3

General graph: A graph in which multiple edges and loops are allowed.

Loop e = (v, v): An edge joining a vertex v to itself.

Multiple edges: Several edges joining the same two vertices.

Degree of a vertex v in G, degG(v): The number of edges in G incident with v.
Note that loops are special cases which add 2 to the degree, each connection to
v counting as 1.

Multiplicity of the edge e = (i, j), λ(e): The number of edges of G joining i to j.

Empty edge: An edge e such that x(e) = 0.

Full edge: An edge e such that λ(e)− x(e) = 0.

Partition of V (G): A collection of subsets Vi of the vertices such that

⋃
i

Vi = G(V) and Vj
⋂

Vi = ∅ for i 6= j.

Adjacency matrix of G, AG: A matrix with rows and columns labelled by the graph
vertices, with entries λ(i, j) in position (i, j) off the diagonal, and with entries 2λ(i, i)
in position (i, i) on the diagonal.

Connected graph: A graph where there is a path from any vertex to any other vertex
in the graph.

Spanning subgraph F of G: A graph F = (V (G), E(F)) such that 0 ≤ AF ≤ AG

where for all e ∈ E(F), x(e) ∈ Z. If we drop the requirement x(e) ∈ Z, we say that
F is a fractional subgraph.

Subgraph Gn of G: A subgraph of G such that V (Gn) = {v ∈ V (G) : degG(v) = n}.

Underlying subgraph of G: A subgraph obtained by removing the loops from G and
replacing the multiple edges by a single edges.

Independent vertex set in G: Subset of V (G) such that no two vertices of this sub-
set are joined by an edge of G.

Bipartite graph G: A (general) graph for which the set of vertices V (G) is parti-
tioned into two disjoint independent vertex sets X1 and X2; that is, X1∪X2 = V (G)

4 ZOÉ HAMEL

and X1 ∩X2 = ∅.

Subgraph of G induced by the vertex set X ⊆ V (G): A subgraph of G with ver-
tex set X and edge set consisting of the edges of G joining vertices of X.

Network flows (See more details in Section 3).

Directed graph, D = (N(D,A(D)): A directed graph with the set of nodes N(D) =
{n : n ∈ N(D)} and the set of arcs A(D) = {a : a ∈ A(D)}, where each are an
ordered pair of nodes.

Directed graph D(G): A directed graph associated to any undirected general graph
G such that AD(G) = AG; in other words, every edge e = (i, j) ∈ G corresponds to
two arcs in D(G), a1 = (i, j) and a2 = (j, i).

Network Q = (N(Q), D(Q)): A directed graph with data and two special nodes: a
source s and a sink t.

Network Q(G): A network associated to any undirected general graph G by a special
construction (see Section 4.1).

Capacity function of Q: The function u : A(Q) → R, acting as an upper bound on
the flow function of Q.

Lower bound function of Q: The function l : A(Q) → R, acting as a lower bound
on the flow function of Q.

Flow function of Q: The function x : A(Q) → R satisfying the capacity constraint:
l(a) ≤ x(a) ≤ u(a).

Empty arc: An arc a such that x(a) = 0.

Full arc: An arc a such that u(a)− x(a) = 0.

Flow conservation condition:∑
i:(i,j)∈A

x(i, j) =
∑

j:(i,j)∈A

x(i, j) ∀i 6= s, t.

Size of the flow: The total amount of flow leaving the source s.

Maximal flow of Q: A flow in Q which has the maximal size among all flows in the
network Q.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 5

Network flow problem: Finding the maximum flow which can be pushed from s to t.

st-cut: A partition of the nodes in two sets Y and Z such that the source s is in the
set Y and the sink t is in Z.

Net flow across cut: (flow leaving Y) - (flow entering Y).

Capacity of a cut: The sum of the capacity of each arc going from Y to Z.

Minimum cut of G: A cut which has the minimum capacity among all cuts in a net-
work Q.

The excess capacity of a cut, tY,Z: (capacity of the cut) - (size of the flow).

Residual network of Q, Q′: A network formed based on Q and a given flow x.

Residual capacity of Q′: The capacity function of the residual networkQ′, r : A(Q′)→
R.

Augmenting path: A directed path P from s to t inside the residual network such
that r(a) > 0 for all a ∈ P .

Ford-Fulkerson algorithm: An algorithm to find a maximum flow for any given net-
work associated with an initial flow.

Walks and Trees.

Walk: A sequence of vertices and edges v1, e1, v2, e2, v3, ..., en−1, vn in a general graph
G which may pass through the same edge or vertex more than once.

Path: A walk with no repeated vertices.

Trail: A walk with no repeated edges.

Euler trail: A trail going through every edge of a given graph exactly once.

Length of a walk: The number of edges of a walk.

Closed walk: A walk such that v0 = vn.

Cycle: A closed trail such that the only repeated vertex is v0 = vn.

6 ZOÉ HAMEL

Tree: A connected graph without cycles.

Leaf: A vertex v in the tree such that deg(v) = 1.

Matchings (See more details in Section 5.1).

Matching M : A matching M in G is a set of edges without common vertices in G.

Size of a matching M : The number of edges e ∈M .

Maximal matching: A matching M such that if we add an edge e 6∈M , then it is no
longer a matching.

Matching problem: Given a graph G, finding a maximum matching.

Alternating path in a matching M : A path whose edges are alternatively in and
out the matching M .

Augmenting path in a matching M : An alternating path in M satisfying the ad-
ditional condition that its two end vertices aren’t incident to any edges of M .

Perfect matching: A matching M in G such that for all i ∈ G, degM(i) = 1.

f -factors (See more details in Section 4).

f-factor of G: A subgraph F of G satisfying f(i) = degF (i) for all i ∈ V (G), given a
function f . If F is a fractional subgraph, it is a fractional f -factor.

f-factor problem: Given a general graph G and a function f , determining whether
G has an f -factor or not.

(g, f)-factor of G: A subgraph F of G satisfying g(i) ≤ degF (i) ≤ f(i) for all i ∈
V (G), given the functions f and g. If F is a fractional subgraph, it is a fractional
(g, f)-factor.

Directed f-factor of D(G): A subgragh B of D(G) where AB has ith row and col-
umn sums equal to f(i) and satisfying 0 ≤ AB ≤ AG.

Directed (g, f)-factor of D(G): A subgragh B of D(G) where AB has row and col-
umn sums, r(i) and c(i) repectively, satisfying g(i) ≤ r(i) ≤ f(i) and g(i) ≤ c(i) ≤
f(i).

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 7

f-odd component C of G: In Tutte’s f -factor Theorem 4.1, for a given a partition
S, T, U of V (G), the components of the graph G− (S ∪ T) satisfying∑

x∈V (C)

f(x) + eG(C, T) ≡ 1 (mod 2).

where eG(C, T) counts all edges (i, j) in G such that i ∈ C, j ∈ T , according to
multiplicity.

f-barrier: A partition of V (G) which upon examination reveals that G has no f -factor.

Auxiliary graph H: A subgraph H (with a special construction) of the general graph
G for which we want to solve the f -factor problem.

Alternating Walks (See more details in Section 5).The algorithm to find alternating walk in
a graph involves tree growing creating blossoms.

Alternating walk: A walk v1, e1, v2, e2, v3, ..., en−1, vn such that we can add 1 to en-
try x(e1), subtract 1 from entry x(e2), etc. (or 2 if ei is a loop) while preserving
0 ≤ AF ≤ AG; or the same series of operations starting with subtraction.

Reachable: A vertex i is reachable from j if there is an alternating walk from i to j.

Dual of a statement: A statement for which we replace X by X, x(e) by λ(e)−x(e),
label (+) by (−), addition by subtraction, etc., from the initial statement.

Unscanned vertex: A leaf of the tree from which we haven’t tried to grow the tree yet.

Auxiliary graph G∗: A subgraph of G with a specific construction used in the algo-
rithm to find alternating walks.

Base of the tree: The vertex from which we start growing the tree.

Blossom: A cycle formed in growing the tree.

Pseudovertex: A vertex of the tree representing a blossom or a nesting of blossoms.

Simple vertex: A vertex of the tree which is not a pseudovertex.

Nesting of blossoms: A blossom such that one of its vertices (or more) is a pseu-
dovertex itself.

Base of a blossom: The vertex closest to the base of the tree.

8 ZOÉ HAMEL

True base of a blossom: If the base of a blossom is not a pseudovertex, then it is
the true base; otherwise the true base is inductively the true base of the base of the
blossom.

Shrinking a blossom: Replacing the blossom and all of its vertices by a single pseu-
dovertex representing all the vertices in the blossom.

Expanding a blossom: Replacing the pseudovertex back to an alternating path in-
side the blossom.

Fake loop: A loop in G∗ which does not correspond to a loop in G.

Applications (See more details in Section 9).

Berge’s substitute S: A complete bipartite graph used to replace each vertex of a
graph G in order to transform an f -barrier problem into a matching problem. It
composed of two independent sets of vertices: V1(S) has (d− f(i)) internal vertices
and V2(S) has d external vertices.

Gabow’s sparse substitute, S ′: A graph used to replace each vertex of a graph G in
order to transform an f -barrier problem into a matching problem. It is more efficient
than Berge’s substitute S.

Decomposition of G: Set of k subgraphs F1, F2, ..., Fk such that E(F1), E(F2), ..., E(Fk)
partition E(G).

Edge colouring of G: A decomposition of E(G) into matchings, called colour classes.

Colour class of G: A matching in the edge colouring of G.

Chromatic index of G, χ′(G): The minimum number of colour classes in any edge
colouring of G.

4(G): The maximum degree of any vertex in G.

3. Basic results about network flows

A network is a directed graph Q = (N(Q), A(Q)) = (N,A) with data and two special
nodes: a source node s and a sink node t (Figure 2). In our case, we will consider three
type of data: the flow, the capacity (or upper bound on the flow), and the lower bound
on the flow. The capacity function u and the lower bound function l, where u, l : A → Z,
respectively assign a fixed value to each arc a ∈ A(Q) such that l(a) ≤ u(a). The flow
function x : A → R is required to satisfy l(a) ≤ x(a) ≤ u(a) for all a ∈ A; it is called the

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 9

capacity constraint. Note that the lower bound function is sometimes omitted and that the
flow is usually non negative, so x : A → R+ such that 0 ≤ x(a) ≤ u(a). An arc a ∈ A is
empty if x(a) = 0 and it is full if u(a) − x(a) = 0. For all nodes n ∈ N , the inflow equals
the outflow; this is called the flow conservation and can be written as

∑
i:(i,j)∈A

x(i, j) =
∑

j:(i,j)∈A

x(i, j) ∀i, j 6= s, t. (1)

S T

2

3

4

11,16

8,13

12,12

11,14

4,4

15,20

7,70,10 1,4
4,9

1

Figure 2. Network Q with flow x and capacity u (x, u).

The size of the flow is the net amount of flow leaving the source (equals to the net amount
of flow entering the sink)and the maximum flow of a network is a flow of maximum size
among all possible flows. The network flow problem consists in finding the maximum flow
which can be pushed from s to t under the conditions imposed by the capacity constraint
and the flow conservation.

A partition of the nodes of a directed graph G is a collection of pairwise disjoint subsets Ni

of the nodes such that
⋃

iNi = G(V). A cut (or an st-cut) is a partition of the nodes in
two sets Y and Z such that the source s is in the set Y and the sink t is in Z. The net flow
across the cut (Y, Z) is the difference between the flow from Y to Z and the flow from Z
to Y . The capacity of a cut is the sum of the capacity of each arc going from Y to Z. The
minimum cut of a directed graph is a cut which has the minimum capacity among all cuts.
The excess capacity of a cut (Y, Z), denoted tY,Z , is the difference between the capacity of
the cut and the size of the flow. In our investigation, no flow enters s so we can express tY,Z
as:

tY,Z =
∑
i∈Y
j∈Z

u(i, j)−
∑
i∈Y

x(s, i).

10 ZOÉ HAMEL

T

2

3

4

11,16

8,13

12,12

11,14

4,4

15,20

7,70,10 1,4
4,9

1

S

Figure 3. An st-cut where Y = {s, 1, 2} and Z = {3, 4, t}.

The following Lemma 3.1 relates the size of the flow to the net flow across the cut and is
useful to solve network flow problems.

Lemma 3.1. (Flow value Lemma) Let f be any flow and (Y, Z) be any st-cut. Then,
the size of the flow equals the net flow across the cut.

Let us define some general terminology which will be important for the rest of this paper.
In a general graph G, a walk is a sequence of vertices and edges v1, e1, v2, e2, v3, ..., en−1, vn
which may pass through the same edge or vertex more than once. The length of a walk
corresponds to its number of edges. A trail is a walk that passes through every edge at most
once. A path is a walk which passes through every vertex at most once. We say that a walk
is closed if v0 = vn and a cycle is a closed trail such that the only repeated vertex is v0 = vn.
We say that a graph is connected if there is a path from any vertex to any other vertex in
the graph. A tree is a connected graph without cycles. In the tree, if a vertex v has degree
1, it is called a leaf.

Given a network Q and a flow x, we define the residual network of Q, denoted Q′, to
be the network with capacity r (called residual capacity). A residual network is formed as
follows: for each arc a = (i, j) ∈ Q, we have two arcs a1 = (i, j) and a2 = (j, i) in Q′ where
r(a1) = u(a) − x(a) and r(a2) = x(a). In a network flow, an augmenting path is a directed
path inside the residual network (s, a1, n1, a2, ..., an, t) from s to t such that r(ai) > 0 for all
i = 1, ..., n. If there exists an augmenting path P then the size of the flow can be increased
by min(r(ai)) for all i = {1, 2, ..., n} on the path P .

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 11

S T

2

3

4

1

11

5

5

8

11 3

12

4

5

3

11

4

70

15

5

0

Figure 4. Residual network
Q′ of Q with flow x as shown

in Figure 2.

S T

2

3

4

1

11

5

5

8

11 3

12

4

5

3

11

4

70

15

5

0

0

Figure 5. Augmenting path
in Q′ as shown in Figure 4.

Theorem 3.2. (Max-flow Min-cut Theorem, [7]) For any network Q, the capacity of
the minimum st-cut is equal to the size of the maximum flow from s to t.

To prove the Max-flow Min-cut Theorem 3.2, we will prove that the following statements
are equivalent:
(i) f is a maximum flow,
(ii) there is no augmenting path,
(iii) there exist a cut such that the capacity of this cut equals the size of the flow.

Proof. (i) ⇒ (ii) We will prove ((∼ ii) ⇒ (∼ i)) Suppose that there exists an augmenting
path with respect to a flow f . Then the flow can be increased by the min(r(ai)) where ai
are the arc on the path. Therefore f is not maximum.
(ii) ⇒ (iii) Suppose that there is no augmenting path with respect to f . Consider the cut
(Y, Z) such that Y consists of the vertices connected to s with no full forward arcs, and no
backward empty arcs. Note that s ∈ Y by definition, and t ∈ Z since there is no augmenting
path. Since backward edges are empty, the capacity of this cut is equal to the net flow across
the cut which is equal to the size of the flow, by the Flow value Lemma.
(iii) ⇒ (i) Suppose that there exists a cut (Y, Z) such that the capacity of the cut equals
the size of the flow f . Let f ′ be another flow. Then, f ′ ≤ capacity of (Y, Z) = size of f .
Therefore f is a maximum flow. �

We can mention the Ford-Fulkerson algorithm which is used to find the maximum flow of
a network. Starting from any flow in a network, the algorithm allows to increases the initial
flow step by step until it reaches its maximum size. It goes as follows:
(1) x is the initial flow
(2) Create the residual network of Q with respect to the flow x
(3) While there exists an augmenting path in the residual network, add this path to the flow
increasing the size of the flow by the minimum residual capacity along this path.

For example, consider the network Q as in Figure 2 with initial flow x and its residual net-
work Q′ as in Figure 4. We showed in Figure 5 that we can find an augmenting path. Using

12 ZOÉ HAMEL

this path, we can then augment flow x by the minimum residual capacity along the path,
which is 4, resulting in the flow given in Figure 6. Then we look for a new augmenting path
in order to do the same thing. In this case, we can’t find an augmenting path so the flow is
now maximal in Q.

S T

2

3

4

11,16

12,13

12,12

11,14

4,4

19,20

7,70,10 1,4 0,9

1

Figure 6. Example of the Ford-Fulkerson algorithm on network Q with
flow x as shown in Figure 2.

One last fundamental network flow result which will be very important in our theory is
the Integrality Theorem 3.3.

Theorem 3.3. (Integrality Theorem) Let Q = (N,A) be a directed graph for network
flow problem. If all capacities are integers, then there exists a maximum flow x such that
x(a) is integer for all a ∈ A.

Remark 3.4. This idea of augmenting paths won’t always work for non-integral capacity.
An alternate search strategy for augmenting paths using breadth first search does work.

4. f-factor problem

A subgraph F of a general graph G can be defined as a vector −→x = (x(e) : e ∈ E(G)) such
that 0 ≤ x(e) ≤ λ(e) and x(e) ∈ Z. If the requirement x(e) ∈ Z is dropped, we say that
F is a fractional subgraph. In a network flow, x(a) represents the flow, while in a graph,
x(e) represents the multiplicity of the edge e in the subgraph F . The adjacency matrix
of a subgraph F of G always satisfies 0 ≤ AF ≤ AG. For example, consider the general
graph G on 10 vertices in Figure 7 and its subgraph F in Figure 8. We can express F as
−→x = (x(e1), x(e2), ..., x(e16)) = (1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1).

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 13

3

4 7

5

6

8

9

10

1

2

e1 e7

e9

e8

e4

e2

e6
e10

e11 e12

e14

e13

e16

e15
e3

e5

Figure 7. General graph G.

Unused edges from G

Edges of F

1

2

3

4 7

5

6

8

9

10

e1 e7

e9

e8

e4

e2

e6

e10

e11 e12

e14

e13

e16

e15

e3

e5

Figure 8. Subgraph F of G; an f -factor of G with f(i) =
∑

j∈V (G) x(i, j).

Now consider the functions f : V → Z+. A general graph G has an f -factor if there exists
a subgraph F of G given by −→x = (x(e) : e ∈ E(G)) with x(e) ∈ Z and such that for all
i ∈ V (G): ∑

j∈V (G)

x(i, j) = degF (i) = f(i). (2)

For example, the subgraph F of G in Figure 8 is an f -factor if we define f(i) = degF (i).
If the requirement x(e) ∈ Z is dropped, then F is a fractional f -factor. As mentioned in
the introduction, the adjacency matrix of an f -factor F of G corresponds to an integral
symmetric matrix A with even entries on the diagonal, ith row and column sums equal to

14 ZOÉ HAMEL

f(i) for i = 1, 2, ..., n and satisfying 0 ≤ AF ≤ AG. For the subgraph F (Figure 8), we have
the following matrix:

AF =



2 0 0 1 0 0 0 0 0 0
0 2 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 2 1
0 0 0 0 0 0 0 2 0 1
0 0 0 0 0 0 0 0 1 1


.

Note that the adjacency matrix of a fractional f -factor will have the same properties with
the exceptions that entries off the diagonal may not be integers and entries on the diagonal
may not be even integers.

Given a general graph G and an integer function f , the well-known f -factor problem asks
whether an f -factor of G exists. Tutte’s f -factor Theorem 4.1 is a famous theorem in graph
decomposition which gives a characterization for the existence of f -factors in a given general
graph G. Recall that eg(S, T) counts all edges (i, j) such that i ∈ S and j ∈ T , according
to multiplicity.

Theorem 4.1. (Tutte’s f-factor Theorem, [12]) Let G be a general graph and f :
V (G) → Z+ be a function. Then G has a f -factor if and only if for all disjoint subsets S
and T of V (G), ∑

i∈S

f(i) +
∑
i∈T

(degG(i)− f(i))− eG(S, T)− q(S, T) ≥ 0, (3)

where q(S, T) denotes the number of components C of G− (S ∪ T) such that∑
i∈V (C)

f(i) + eG(C, T) ≡ 1 (mod 2). (4)

For convenience, we will call any components of G− (S∪T) satisfying equation (4) an f -odd
component of G.

The objective of this Section is to provide a detailed description of the theory given by
Anstee to solve the f -factor problem. We will start by showing how he combines a network
flow approach and a graph theory approach and the advantages of doing so.

4.1. From graphs to network flows and back again. We start with a general graph
G on n vertices for which we want to solve the f -factor problem. We associate two other
graphs to G: a directed graph D(G) such that AG = AD(G) (Figure 1), and a constructed

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 15

network flow graph Q(G) (Figure 10).

The network flow graph Q(G) = (N,A) is constructed on 2n + 2 nodes as follows: a
source s, a sink t, and nodes R1, R2, ..., Rn, S1, S2, ..., Sn. There are arcs from s to Ri and
from Si to t such that u(s, Ri) = u(Si, t) = f(i) for i,= 1, 2, ..., n and arcs from Ri to Sj

with capacity u(i, j) = λ(i, j). If there is an edge (i, j) in G, it is translated by two arcs
(Ri, Sj) and (Rj, Si) in D(G). Figure 10 represents the network flow graph Q(G) of the
general graph G shown in Figure 9. All arcs between Ri and Sj all have capacity 1, except
u(R1, S5) = u(R5, S1) = 2 since λ(1, 5) = 2.

1

23

5

4

Figure 9. General graph G.

1

23

5

4

Figure 10. Directed graph D(G).

R1

R2

R3

R5

R4

S1

S2

S3

S5

S4

TS

f(1)

f(2)

f(3)

f(4)

f(5)
f(5)

f(4)

f(3)

f(2)

f(1)

Figure 11. Network Q(G).

16 ZOÉ HAMEL

The first step is to determine if D(G) has a directed f -factor B. A directed f -factor can
be defined in term of its adjacency matrix as an integral matrix AB = (bij) with ith row
and column sums equal to f(i) for i = 1, 2, ..., n and satisfying 0 ≤ AB ≤ AG. The key
observation and the reason why it is interesting for us to use a network flow approach is
that finding a directed f -factor in D(G) is equivalent to finding an integral maximum flow
of size f(1) + f(2) + ... + f(n) in Q(G). Indeed, if there exists a directed f -factor B with
adjacency matrix AB = (bij), then there is an integral maximum flow of size f(1) + f(2) +
... + f(n) such x(Ri, Sj) = bij. Now assume that there exists an integral maximum flow of
size f(1) + f(2) + ...+ f(n) in Q(G). Consider the matrix AB = (bij) where bij = x(Ri, Sj).
We can make two observations based on the flow conservation property:

(1)
n∑

j=1

x(Ri, Sj) = f(i) ∀i = 1, ..., n;

(2)
n∑

i=1

x(Ri, Sj) = f(j) ∀j = 1, ..., n.

So AB has ith row and column sums equal to f(i) while 0 ≤ AB ≤ AG; therefore, B is a
directed f -factor of G.

PUT SOMEWHERE x(i, j) = 1/2(x(Ri, Sj) + x(Rj, Si)).

Remark 4.2. In order to claim that there exists an integral maximum flow of size f(1) +
f(2) + ... + f(n), and therefore that G has a directed f -factor, it is sufficient to find a
maximum flow of this size, by the Integrality Theorem 3.3

The following theorem reveals the significance of the existence of a directed f -factor in G
for the f -factor problem.

Theorem 4.3. (Anstee, [2]) Let G and f be given. Then G has a fractional f -factor if
and only if D(G) has a directed f -factor.

Proof. (⇒) Assume that G has a fractional f -factor. By definition, equation (2) holds.
Translating into the network flow graphQ(G) for the network flow problem, we get x(s, Ri) =
f(i), x(Sj, t) = f(j), and x(Ri, Sj) = x(Rj, Si) = x(i, j) implying that∑

i:(Ri,Sj)∈A

x(Ri, Sj) = f(i);
∑

j:(Ri,Sj)∈A

x(Ri, Sj) = f(j)

This flow x is a maximum flow of this size f(1) + f(2) + ... + f(n). By the Integrality
Theorem 3.3 , there exists an integral maximum flow x′ of this size and therefore D(G) has
a directed f -factor.
(⇐) Assume that D(G) has a directed f -factor B. Consider the general graph corresponding
to the matrix (AB+AT

B)/2. It may not have integral entries off the diagonal or even entries on

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 17

the diagonal but it is a symmetric matrix with ith row and column sums f(i) for i = 1, 2, ..., n
and it satisfies 0 ≤ (AB + AT

B)/2 ≤ AG. Therefore, it is a fractional f -factor of G. �

Lemma 4.4. If G has a directed f -factor, then G has a half integral fractional f -factor.

Proof. Assume that D(G) has a directed f -factor B, then (AB+AT
B) ∈ Z and so (AB+AT

B)/2
is a fractional f -factor of G such that 2x(e) ∈ Z for all e ∈ E(G). �

It is sometimes useful to view the matrix operation 1
2
(AB + AT

B) as a flow operation

x(i, j) = 1
2
(x(Ri, Sj) + x(Rj, Si)).

Using a network flow approach allows us to use well known methods such as the Ford-
Fulkerson algorithm to quickly determine whether a graph G has a half-integer fractional
f -factor. On one hand, if D(G) has no directed f -factor, then, by Theorem 4.3, G doesn’t
have a fractional f -factor and it cannot have an f -factor. On the other hand, if D(G) has
a directed f -factor, then, by Theorem 4.3, G has fractional f -factor B. The next phase of
Anstee’s theory is to figure out if B can be transformed into an f -factor. We provide an
algorithm that either succeeds in transforming the half integral fractional f -factor into an
f -factor or finds an f -barrier, a partition of V (G) which upon examination reveals that G
has no f -factor.

4.2. Existence of a directed f-factor. The following theorem about the existence of a
directed f -factor is an adapted version of the Max-flow Min-cut Theorem 3.2.

Theorem 4.5. (Anstee, [2]) Let G be a general graph. There is a directed f -factor in G
if and only if ∑

i∈T

f(i) ≤
∑
j∈S

f(i) +
∑
i∈T

j∈(T∪U)

λ(i, j) (5)

for all partitions S, T , U of {1, 2, ...n}.

Proof. By Remark 4.2, it is sufficient to show that there is an integral maximum flow of
size f(1) + f(2) + ... + f(n) if and only if equation (5) holds for all partitions S, T , U of
1, 2, ..., n. Equation (5) can be deduced from Theorem 3.2. Let I, J ⊆ {1, 2, ..., n}. Observe
that for any arbitrary cut between I ∪ J̄ and Ī ∪ J such that the source s ∈ I ∪ J̄ and the
sink t ∈ Ī ∪ J , the capacity of the cut equals∑

i∈Ī

f(i) +
∑
i∈I
j∈J

u(i, j) +
∑
j∈J̄

f(i). (6)

By Max-flow Min-cut Theorem 3.2 , we obtain∑
i∈Ī

f(i) +
∑
i∈I
j∈J

u(i, j) +
∑
j∈J̄

f(i) ≥
n∑

i=1

f(i). (7)

18 ZOÉ HAMEL

We now show that the condition can be restricted to a more specific cuts, where I ⊆ J .
Note that: ∑

i∈Ī

f(i) =
∑
i∈Ī∪J̄

f(i)−
∑
i∈I\J

f(i)

∑
i∈J̄

f(i) =
∑
i∈J̄\I

f(i) +
∑
i∈I\J

f(i)

∑
i∈I
j∈J

u(i, j) =
∑
i∈I∩J
j∈I∪J

u(i, j) +
∑
i∈I∩J
j∈I\J

u(i, j) +
∑
i∈I\J
j∈J

u(i, j)

Moreover, since u(i, j) = u(j, i), we can write∑
i∈I∩J
j∈I\J

u(i, j) +
∑
i∈I\J
j∈J

u(i, j) =
∑
i∈I\J
j∈J\I

u(i, j).

Therefore: ∑
i∈Ī

f(i) +
∑
i∈I
j∈J

u(i, j) +
∑
i∈J̄

f(i)

=
∑
i∈Ī∪J̄

f(i)−
∑
i∈I\J

f(i) +
∑
i∈I∩J
j∈I∪J

u(i, j) +
∑
i∈I\J
j∈J\I

u(i, j) +
∑
i∈J̄\I

f(i) +
∑
i∈I\J

f(i)

=
∑
i∈Ī∪J̄

f(i) +
∑
i∈I∩J
j∈I∪J

u(i, j) +
∑
i∈I\J
j∈J\I

u(i, j) +
∑
i∈J̄\I

f(i).

Finally note that ¯I ∩ J = Ī ∪ J̄ , ¯I ∩ J = J̄ \ I, and u(i, j) ≥ 0. Thus, if the following
inequality holds, ∑

i∈ ¯I∩J

f(i) +
∑
i∈I∩J
j∈I∪J

u(i, j) +
∑
i∈ ¯I∩J

f(i) ≥
n∑

i=1

f(i), (8)

so does equation (7). Therefore, in order to be true for all subsets I, J ⊆ {1, 2, ..., n}, it is
sufficient to be true for all I, J such that I ⊆ J . In order to complete the proof, we simply
have to set S = J̄ , T = I, and U = J \ I. �

We can relate this theorem to the characterization given in Tutte’s f -factor Theorem 4.1.
Consider the partition S, T, U of V (G) such that S̄ = U ∪ T and T̄ = S ∪ U . It is worth
noting that in Tutte’s Theorem 4.1 the set U does not explicitly appear and is simply seen
as S ∪ T ; otherwise, Tutte uses the same partition of V (G). First, assume that G has no
directed f -factor. Then, by Theorem 4.5, there exists a partition S, T, U of {1, 2, ..., n} such
that equation (5) doesn’t hold. By rearranging this inequality, we have:∑

j∈S

f(i)−
∑
i∈T

f(i) +
∑
i∈T
j∈(S̄)

λ(ij) ≤ 0. (9)

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 19

Notice that in equation (3),

∑
i∈T

degG(i)− eG(S, T) =
∑
i∈T

deg(G−S)(i) =
∑
i∈T

j∈(T∪U)

λ(ij). (10)

Since q(S, T) ≥ 0, if equation (9) holds, equation (3) doesn’t hold and there is no f -factor.
Therefore, as desired, if there is no directed f -factor our conclusion that there cannot be an
f -factor agrees with the characterization given in Tutte’s f -factor Theorem 4.1.

We can also compute tT,S̄ for an st-cut formed by the source s, Ri for i ∈ T , and Sj for
j ∈ S as in Figure 12. Recall that tT,S̄ equals the capacity of the cut minus the size of the
flow, and so we have:

tT,S̄ =

∑
i∈T̄

f(i) +
∑
i∈T
j∈S̄

λ(i, j) +
∑
i∈S

f(i)

−∑
i

f(i)

So

tT,S̄ =
∑
j∈S

f(i) +
∑
i∈T
j∈S̄

λ(ij)−
∑
i∈T

f(i). (11)

For any given directed f -factor, B = (bij) where bij = x(i, j), another expression of tT,S̄ will

be useful in proving that when tT,S̄ is relatively small for some pair (T, S) we cannot find an
f -factor. By Lemma 3.1, tT,S̄ can also be defined as the capacity of the cut minus the net
flow across the cut:

tT,S̄ =
∑
i∈T

f(i) +
∑
i∈T
j∈S

λ(i, j) +
∑
i∈S

f(i)− (
∑
i∈T

f(i) +
∑
i∈T
j∈S

bij +
∑
i∈S

f(i)−
∑
i∈T
j∈S

bij).

After cancellation, we obtain the following equality:

tT,S̄ =
∑
i∈T̄
j∈S

bij +
∑
i∈T
j∈S̄

(λ(i, j)− bij). (12)

20 ZOÉ HAMEL

TS

S

T

U

S

T

U

Figure 12. Partition S, T, U with st-cut (T, S).

Now we need to examine the case where D(G) has a directed f -factor and describe how
to either find an f -factor or an f -barrier.

4.3. From fractional f-factor to integral f-factor. Assume that D(G) has a directed
f -factor B. By Theorem 4.3 , AF = (B + BT)/2 = (aij) is the adjacency matrix of a half
integral fractional f -factor F of G such that aij = x(e) where e = (i, j) in F and 2x(e) ∈ Z.
The purpose of this section is to transform F so that as many as possible fractional entries
off the diagonal become integer entries and as many as possible odd integer entries on the
diagonal become even integer entries. This transformation has to be done while preserving
0 ≤ AF ≤ AG.

Consider the general graph H on the vertices of G such that there is an edge e = (i, j)
when x(i, j) is not an integer and a loop e = (i, i) when x(i, i) is an odd integer. So H is a
subgraph of F consisting only of the edges e such that x(e) needs to be transformed in order
to obtain an f -factor. For each entry x(e) where e ∈ E(H), we want to add or subtract 1/2
(1 for loops) to get integer entry in AH (even entry for loops) while preserving the degree of
the vertices of H. When such transformation is successfully executed on some edges e ∈ H,
we say that those edges can be removed from H and the respective entries aij of AH then
become the entries aij of AF . The ultimate goal is to remove all the edges from H in order
to have the desired f -factor in G.

The following Lemma 4.6 partitions the edges of any general graph into three sets depend-
ing the type of walk it belongs to. In order to transform the edges of H, we will use this

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 21

partition and proceed with a specific strategy for each of these different type of walks. We
will first give a method to remove the even length closed trails in and then to remove the
vertex disjoint odd cycles. Note that loops are odd cycles of length 1.

Lemma 4.6. The edges of any general graph G can be partitioned into: (i) even length
closed trails; (ii) paths joining two vertices of odd degree in the graph G; (iii) vertex disjoint
odd cycles.

Remark 4.7. Since row and column sums are integers in AF , the degree of each vertex is
an integer and therefore must have an even number of half edges at each vertex. It implies
that every vertex in H has even degree. Hence, H doesn’t have any path joining two vertices
of odd degree.

Edges of an even length closed trail
Edges of a vertex disjoint odd cycle

Figure 13. Structure of the general graph H:
even length closed trails and vertex disjoint odd cycles.

Removing even length closed trails in H

Consider any even length closed trails in H. We can transform AF by alternatively add
1/2 and subtract 1/2 from the adjacent edges of the trail (1 for a loop) in order to remove
it from H as in Figure 14. Therefore, no matter what the fractional f -factor F is, we can
always remove every even length closed trails of H. Now only the vertex disjoint odd cycles
remain (a loop is an odd cycle of length 1). Note that if H doesn’t have any vertex disjoint
odd cycles, we have transformed our fractional f -factor F into a desired f -factor; we have
solved the f -factor problem.

Proposition 4.8. If H has only even length closed trails (no vertex disjoint odd cycles),
then the directed f -factor B can always be transformed into an f -factor.

22 ZOÉ HAMEL

e1

e2

e3

e4
e5

e6

+1/2

-1/2

-1/2
-1/2

+1/2
+1/2

+1/2

+1/2

-1/2

-1/2

v7

v8

v9v1

v2

v3

v4

v5

v6

e7

e8
e9

e10

Figure 14. Removing an even length closed trail of H.

Removing the vertex disjoint odd cycles in H

Remark 4.9. The number of vertex disjoint odd cycles in H is even if and only if
∑
f(i)

is an even integer.

Proof. Note that for
∑
f(i) to be an even integer is an easy necessary condition for an

f -factor to exist since for any general graph we have
∑
deg(i) = 2|E|. Hence, if there is

an f -factor,
∑
f(i) =

∑
deg(i) = 2|E| is always even. Now consider the following edge

partition of F : E = {e ∈ F : e 6∈ E(H)} and E ′ = {e′ ∈ F : e′ ∈ E(H)}. By construction,
each edge in E counts for 2 in the total sum of the degree of the vertices of F ,

∑
degF (i),

while each edge in E ′ counts for 1. Hence
∑
degF−H(i) is always even, and so the parity

of
∑
degF (i) depends on whether

∑
i∈F degH(i) is odd or even. However, since each edge

of E ′ counts for 1 in
∑
degF (i), it also counts for 1 in

∑
degH(i). Therefore,

∑
degH(i)

corresponds to the number of edges in H. By consequence,
∑
f(i) is even if and only if the

number of edges in H is even; that is, if and only if the number of vertex disjoint odd cycles
in H is even.

�

If two vertex disjoint odd cycles are joined by an edge e, we can remove those two cycles
from H since either x(e) ≥ 1 so we can subtract 1 from x(e), or λ(e) − x(e) ≥ 1 so we
can add 1 to x(e). We consider such edges as alternating walks of length 1, and the vertex
disjoint odd cycles can be removed by pair as shown in Figure 15:

+1/2

-1/2

+1

+1/2

-1/2

-1/2

-1

+1/2

+1/2

-1
+1/2

-1/2

-1/2

+1

Figure 15. Two cases of removing 2 odd cycles of H when they are joined
by an edge.

A general graph has the extended odd cycle property if any pair of vertex disjoint odd
cycles (including loops) is joined by an edge e. The following theorem is a simplified version

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 23

of the f -factor theorem given by Anstee using the extended odd cycle property and the
observation made in Remark 4.9.

Theorem 4.10. (Anstee, [2]) Let G have the extended odd cycle property. Then G has an
f -factor if and only if G has a directed f -factor and f(1) + f(2) + ...+ f(n) is even.

Let C1, C2, ..., Ct be the vertex disjoint odd cycles in H. As opposed to the even length
closed trails, removing all the Ci’s in H is not always possible. It involves the complex con-
cept of alternating walks, which is an adaptation of the alternating paths used in matching
problems (see Section 5.1). We define an alternating walk as a walk v1, e1, v2, e2, v3, ..., en−1, vn
such that we can add 1 to entry x(e1), subtract 1 from entry x(e2), etc. (or 2 if ei is a loop)
while preserving 0 ≤ AF ≤ AG; or the same series starting with subtraction. We can add 1
to x(i, j) if λ(i, j)− x(i, j) ≥ 1 in G, and we can subtract 1 from x(i, j) if x(i, j) ≥ 1 in G.
In order to remove a vertex disjoint odd cycles of H, say C1, we need to find an alternating
walk from a vertex of C1 to a vertex of any other Ci still in H. Therefore, we remove the
Ci’s in pair only, and so if H contains at least one vertex disjoint odd cycles and

∑
f(i) is

odd, we cannot remove all the Ci’s of H, by Remark 4.9. We will show that it implies that
an f -factor cannot exist.

In our investigation, alternating walks give labels to vertices of the general graph G for which
we want to solve the f -factor problem. To do so, we give alternating walks a direction based
on the vertex from which we start the walk, ei goes from vi to vi+1. A walk ends in addition
(subtraction) if we are adding to (subtracting from) en−1. We also say that a vertex j is
reachable from a vertex i if there is an alternating walk from i to j in G. The labelling of
the vertices of G is done based on this concept of reachability. Given a starting vertex v1,
a vertex v of G is labelled (+) if it is reachable from v1 by an alternating walk ending in
addition, while it is labelled (−) if it is reachable from v1 by an alternating walk ending
in subtraction. Note that each vertex can have at most 2 labels. This labelling provides
sufficient information about whether a vertex is reachable from v1 and how a walk can be
continued (by adding, subtraction, or both) from a given vertex if needed.

We now return to our main problem and generalize the idea of the extended odd cycle
property. The goal is to find an alternating walk v1, e1, v2, e2, v3, ..., en−1, vn joining 2 odd
cycles of H with edges ei 6∈ H. If such walk exists, both odd cycles can be removed from H as
shown in Figure 16. If we manage to remove all odd cycles from H, we will have transformed
AF into the desired f -factor. Section 5 describes the algorithm to find an alternating walk
between two disjoint vertex odd cycles. If there is an odd cycle Ck of H which cannot be
joined to another cycle Cj (k 6= j) by an alternating walk, then we claim that there is an
f -barrier; and thus no f -factor in G. This last claim will be proved in section 6.

24 ZOÉ HAMEL

e1 e2 e3

+1/2

-1/2

+1

+1/2

-1/2

-1/2

-1 +1

-1

v1 v2 v3 v4

Figure 16. Removing 2 odd cycles of H with an alternating walk.

We are ready to state Anstee’s alternative version of Tutte’s f -factor Theorem 4.1. The
proof follows from the steps we have discussed and will be completed in Sections 5 and 6:
(1) Is there a directed f -factor? If no, then there is no f -factor. If yes, continue.
(2) Symmetrize the directed f -factor.
(3) Remove all even length closed trails of H.
(4) Can we remove all vertex disjoints odd cycles of H? If no, there is an f -barrier. If yes,
there is an f -factor.

The following statement explicitly describes this process in a version of Theorem 4.1.

Theorem 4.11. (Anstee, [2]) Let G be a general graph on n vertices. Then G has an
f -factor if and only if there is a directed f -factor and there is no f -barrier.

5. Finding an alternating walk

5.1. Analogy with Edmond’s algorithm for matching problem. Before giving the
details about the algorithm to find an alternating walk, we consider an analogy between
the use of alternating walks in an f -factor problem and the use of augmenting paths in a
matching problem.

Given a graph G, a matching M is a set of edges without common vertices in G and the
size of the matching M is the number of edges e ∈ M . The matching problem consists in
finding a matching of maximum size in G, called a maximum matching. Given a matching
M in a general graph G, an alternating path is a path whose edges are alternatively in and
out the matching M . Such an alternating path is called an augmenting path if it satisfies the
additional condition that its two end vertices aren’t incident to any edges of M . In other
words, it is an odd length path v1, e1, v2, e2, ..., en−1, vn such that eodd ∈ M , eeven 6∈ M , and
degM(v1) = degM(vn) = 0. as shown in Figure 17.

v1 v2 v3 v4
v5 v6

e1 e2 e3 e4 e5

Not in the matching
In the matching

Figure 17. Augmenting path P .

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 25

If such a path exists, it is possible to modify the initial matching M by letting eeven ∈ M
and eodd 6∈M ; we then obtain a new matching M ′ in G with one more edge than in M as in
Figure 18). Hence, using augmenting paths we were able to increase the size of the initial
matching M by one. Claude Berge proves the following theorem which indicates the central
use of augmenting paths:

Theorem 5.1. (Berge, [6]) A matching is maximum if and only if there is no augmenting
path.

v1 v2 v3 v4 v5 v6e1 e2 e3 e4 e5

Not in the matching

In the matching

Figure 18. Using the augmenting path P from Figure 17 to increase the
size of the matching M by one.

Edmond’s algorithm is designed to find augmenting paths in a graph. If the algorithm fails
at returning an augmenting path P in a graph G, then, by Theorem 5.1, the matching is
maximum in G. In the case of an f -factor problem in a general graph instead of a matching
problem, alternating walks take the role of augmenting paths. We will show that if the
algorithm designed for finding alternating walks between two vertex disjoint odd cycles of H
(see Section 5.2) fails at finding such walk for a cycle Ci ∈ H, then there exists an f -barrier.

Edmond’s algorithm is based on the concept of blossoms. We will adapt this concept to
alternating walks. The algorithm for finding an alternating walk in G roughly consists in
growing a tree from a given vertex v ∈ G, called the base of the tree, following a specific
strategy. A blossom is a cycle formed during the tree growing process. The base of a blossom
is defined as the vertex which is the closest to the base of the tree. Shrinking a blossom refers
to replacing the blossom and all of its vertices by a new single vertex b, called a pseudovertex,
such that b will represent all the vertices in the blossom (Figure 20). Expanding a blossom
refers to replacing the pseudovertex b by an alternating path existing inside the pseudovertex
(Figure 20). We define a simple vertex as a vertex which is not a pseudovertex. Note that we
can have a blossom such that one of its vertices (or more) is a pseudovertex itself. In this case,
when we shrink the blossom we have a pseudovertex containing one or more psudovertices;
this is called a nesting of blossoms. Using induction, we may have a pseudovertex containing
pseudovertices which themselves contain pseudovertices, etc. Therefore, it is useful to define
the true base of a blossom as the following. If the base of a blossom is not a pseudovertex,
then it is the true base since it is not contained in another blossom; otherwise the true base
is inductively the true base of the base of the blossom.

26 ZOÉ HAMEL

v1 vk

v'1 v's

e1

e2 ek

v

e'1

e'2 e's

e

...

...

Base of the blossom

Figure 19. Formation of a blossom during the tree growing process.

v1 vr

v's

e1

e2 er

v e

...

v1 vk

v'1 v's

e1

e2 ek

v

e'1

e'2 e's

e

...

...

b

SHRINKING

EXPANDING

e*

e*

e*

Figure 20. Shrinking and expanding a blossom.

Remark 5.2. In an alternating walk for an f -factor, an edge needs only to be used twice.

By Berge, in a matching problem, the necessity to use an edge twice in an augmenting path
is irrelevant since an edge is either matched or not matched. In other words, x(e) is 0 or 1
(we cannot have x(e) ≥ 2), and so edge multiplicity does not matter. On the other hand, for
f -factor problems, edge multiplicity does matter, making the concept of alternating walks
more complex than augmenting paths.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 27

Consider the example illustrated in Figure 21 to understand why it is necessary to allow
edges to be used twice in certain circumstances. In Figure 21, let x(v1, v2) ≥ 2 and let
the walk have direction as given starting at v. Assume that we did not allow the edge
(v1, v2) to be used more than once in the walk. Then we wouldn’t be able reach w by an
alternating walk starting from v using the given edges. Since e9 ∈ X, we need to enter
v1 by subtraction in order to use e9 from v1 to w in the alternating walk. This can only
be done by going around the cycle and re-entering v1 by subtraction through e8. Consid-
ering only the edges given, we would fail at giving w label (+) unless we use e = (v1, v2)
twice. Therefore we would compromise the possibilities for cycles Ci’s in H to be removed.
However, there are two situations in which using an edges twice may be necessary; when
it is used either (1) in opposite direction with the same operation as in Figure 21 or (2)
in the same direction in opposite operations. Those are the two cases where using an edge
twice will give a vertex a label which it didn’t have before. Figure 22 shows how using an
edge twice in opposite directions with opposite operations is unnecessary to find alternating
walks, since it doesn’t give a new label to v1, and therefore, doesn’t allow to leave v1 with
a different operation. In our example, we can directly leave vertex v1 by e8 and don’t have
to go through e2, e3, ..., e7; the alternating walk can be reduced to v, e1, v1, e8, w without af-
fecting the label of the vertices. Finally, note that using an edge twice in the same direction
with the same operation is obviously unnecessary in an alternating walk for the same reason.

v1

v2

v3

v4 v5

v6

e1

e2

e3

e4

e5

w

e6

e7

e8

e9
v

Edges for which we added 1

Edges for which we subtracted 1

Figure 21. Using an edge twice in opposite direction with the same operation.

28 ZOÉ HAMEL

v1

v2

v3

v4

v5

e1

e2

e3

e4 e5

w

e6

e7

e8

v

Edges for which we added 1

Edges for which we subtracted 1

Figure 22. Using an edge twice in opposite direction with different operation.

As a consequence of this last remark, we will create a general auxiliary graph G∗ on
the vertices of G such that it contains the exact number of edges which can potentially
be needed in an alternating walk. Edges of G∗ will be divided into two classes, X and
X. Firstly, for e ∈ G such that e is not a loop. Entries in G such that x(e) ≥ 1 will
be represented by edges in X: 1 edge e = (i, j) in G∗ if x(e) = 1 and 2 edges e = (i, j)
in G∗ if x(e) ≥ 2. Similarly, entries in G such that λ(e) − x(e) ≥ 1 will be represented
by edges in X: 1 edge e = (i, j) in G∗ if λ(e) − x(e) = 1 and 2 edges e = (i, j) in G∗ if
λ(e) − x(e) ≥ 2. Secondly, for e ∈ G such that e is a loop: a loop e ∈ X is added to G∗ if
x(e) ≥ 2, while a loop e ∈ X is added to G∗ if λ(e)− x(e) ≥ 2. Therefore, there will be at
most 4 edges between each pair of vertices; at most 2 edges in X and at most 2 in X. In
all figures, we will represent edges in X as dot edges (- - -) and edges in X as full edges (—–).

5.2. Algorithm.

Overview of the algorithm

Anstee provides an algorithm for finding an alternating walk between an odd cycle of H,
say C1, and any other odd cycle Ck (k > 1) [2]. The general idea is to grow a directed tree,
vertex by vertex, starting from a base vertex r representing C1, such that a directed path
in this tree will correspond to an alternating walk in G. The vertices of the tree correspond
to the vertices of G or pseudovertices created during the algorithm. The edges used to grow
the tree are edges of G∗. We will use the concept of duality in the algorithm. The dual of a

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 29

statement refers to the substitution of X by X, x(e) by λ(e)− x(e), label (+) by label (−),
addition by subtraction, etc. We also define a vertex v of the tree to be unscanned if v is a
leaf of the tree from which we haven’t tried to grow the tree yet. Note that vertices of the
tree can be pseudovertices.

The tree will grow in the following way: if a vertex v has label (−), then we will grow the
tree out from v with every edges e ∈ X in G∗ which is incident to v. The same is done for
the dual. Note that a vertex may have both labels, (+) and (−). In this case, we can grow
the tree using edges from both classes X and X.

We will store information from the tree using the notation: p(w) = v, meaning v is the pre-
decessor of w in the tree. If the tree grows from v to w using an edge in X, then w is given
label (+), and if the edge used is in X, then w is given label (−). In either case, p(w) = v.
An edge can be used to grow the tree only if it is in G∗; once it is used to grow the tree and
give a vertex its label, it is deleted from G∗ so that a same edge won’t be used more than once.

When the tree grows, cycles may arise. They are the blossoms defined earlier. We will
shrink the vertices of the blossom to a pseudovertex which will be given both labels, (+)
and (−). When a blossom is shrunken to a pseudovertex, the edges and vertices of the
blossom are deleted from the tree (Figure 20). However, we need to keep track of those
edges and their original ends independently so that we can expand the blossoms later when
restoring the alternating walk in G corresponding to the directed path in the tree (Figure 20).

Finally, it is helpful to study the case of the vertex r, which represents the odd cycle C1 in
the tree, and therefore is defined as the base of the tree. Although we are shrinking C1 to
the unique vertex r, it is different from the other pseudovertices since it has no predecessor.
Assume that we have found an alternating walk from C1 to Ck (k > 1). The first edge of
the walk leaving r, say e1 = (r, v), may either be in X or in X since r has both labels.
Depending on the class of e1 and its original ends, v1 ∈ H and v2 6∈ H, we will be able
to find an alternating walk starting at v1 and leaving C1 with the appropriate operation to
remove H such as in Figures 23 and 24. Note also that in the tree, r may itself be hidden
in a pseudovertex if a blossom is created with r as a true base. In that case, the first vertex
of the alternating walk, v1, may be inside a nesting of blossoms.

30 ZOÉ HAMEL

v1

v

...

...

C1

-1/2

+1/2

-1/2

+1/2

-1/2

+1
v1

r

(a) Leaving C1 with an edge in X.

v1

v

...

...

C1

+1/2

-1/2

+1/2

-1/2

+1/2

-1

r

v1

(b) Leaving C1 with an edge in X.

Figure 23. Leaving the odd cycle C1

C1

-1

+1

r

v1

(a) Leaving C1 with an edge in X.

C1

+1

-1

r

v1

(b) Leaving C1 with an edge in X.

Figure 24. Special case: leaving the the loop C1

Pseudo-code of the algorithm

We can now provide the pseudo-code of the algorithm given by Anstee to find an alternating
walk from C1 to any vertex of another odd cycle Ck (k > 1) [2]:

Step 1 (Shrink C1): Consider the odd cycle C1 and shrink its vertices to a single vertex r.
Add r to the list of unscanned vertices with labels (+) and (−). At this point, r is the only
vertex in the tree and thus the only vertex in the list of unscanned vertices.

Step 2 (Create general graph G∗): Create the general graph G∗ on the vertices of G as
follows. We divide the edges of G∗ into two classes X and X. For all edges e of G not a
loop, put min(x(e), 2) copies of e in G∗ and for all loops e in G, put min(x(e)/2, 1) copies.
Those edges belong to the class X; they are the entries of G from which we can subtract 1
(or 2) while preserving 0 ≤ AF ≤ AG. On the other hand, for all edges e of G not a loop
put min(λ(e) − x(e), 2) copies of e in G∗ and for all loops e in G put min(λ − x(e)/2, 1)
copies. Those edges belong to X; they are the edges of G to which we can add 1 (or 2) while

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 31

keeping 0 ≤ AF ≤ AG.

Step 3 (Pick an unscanned vertex): If the list of unscanned vertices is empty, then STOP;
there is an f -barrier since we are unable to grow the tree any further and we haven’t reached
a vertex from an odd cycle Ck (k > 1) (see results in Section 6). Otherwise select any vertex
u from the list of unscanned vertices.

Step 4: If u has label (+), do Step 5 and 6.

Step 5 (Search for non loop blossom): If there is an edge (u,w) ∈ X such that w is
already in the tree and has label (+), use it to form a blossom in the tree. Then, shrink
the blossom to a pseudovertex. This pseudovertex has label (+) and (−) since each vertex
of the blossom can be reached by an alternating walk ending in addition and another alter-
nating walk ending in subtraction through the base of the blossom (see Lemma 5.8). The
pseudovertex is added to the list of unscanned vertices. The vertices u and w are deleted
from the list of unscanned vertices. All other vertices of the blossom will have already been
scanned and deleted from the list of unscanned vertices. Return to Step 3.
Otherwise, if no such edge exists, proceed to Step 6 to grow the tree.

Step 6 (Grow tree and search for loop blossom): For all vertices w ∈ G∗ not in the tree
do the following. If there is an edge (u,w) ∈ X, then add w to the tree such that p(w) = u.
Since we leave u by an edge from X, we are reaching w by an alternating walk ending in
subtraction and so w gets label (−). Delete this used edge (u,w) from G∗. If w ∈ Ck, then
STOP; we have found an alternating walk from C1 to Ck (k > 1). Otherwise, if there is
a loop in X at w, then w also has label (+) and becomes the pseudovertex of the blossom
generated by the loop. In other words, w is a pseudovertex representing only one vertex,
which is itself. Add w to the list of unscanned vertices regardless. Now we have grown the
tree in every possible direction from u using edges in X.

Step 7: If u has label (−), do the duals of Step 5 and 6.

Step 8: The vertex u is scanned. Delete it from the list of unscanned vertices. Return to
Step 3.

- end of the algorithm -

A choice of the algorithm is that the loops appear and are shrunken into pseudovertices in
step 6 but it could as well be done in step 5 when we search for blossoms.

Structure of the tree

At any step of the algorithm we will have a tree (see Theorem 5.6) which has the same
structure as in Figure 25. Two types of vertices may appear in the tree: (1) simple vertices,
which are vertices with only one label, (2) pseudovertices, which are vertices representing a

32 ZOÉ HAMEL

blossom or a nesting of blossoms and have both labels. Both type of vertices can be preceded
and followed by any of the two types and their number of children will be determined by
the general graph G on which we solve the problem.

r
+,-

+

+,-

+,-

+

-

+,-

+,-

-

-

+

+,-

+

Figure 25. Tree structure

Recall that r represents C1 or the pseudovertex containing it. Since r has both labels, the
tree can grow out with edges in X and X. We now study in more details the structure of
the tree by describing separately what may happen when we scan a simple vertex and a
pseudovertex.

Case 1: Scanning a simple vertex u with label (+).
Since u has label (+), we can only consider edges in X to leave from u as shown in Figure
26. In view of our results about loops in Section 6, we can assume there is no loop at u in
X. First, we search for a blossom using an edge in X joining u to a vertex in the tree with
label (+) (see Figure 19). If such edge exists, a blossom is formed and we won’t grow the
tree from u any further since the vertices of the blossom are replaced by a new pseudovertex
and u is assumed to be scanned.
If no blossom is found, then we grow the tree from u to every vertex w ∈ G where w is not
in the tree and such that (u,w) ∈ X. For instance, consider vertex v in Figure 26. On one
hand, the edge (v, w1) ∈ X gives w1 label (−) as seen it would appear in the general tree in
Figure 25. On the other hand, the edge (v, w2) ∈ X first gives w2 label (−). Perhaps a blos-
som or nesting of blossoms is later formed with w2 as its true base and w2 is then replaced
by a pseudovertex, representing all the vertices of the blossom, and only the pseudovertex
appears in the tree. The dual is presented in Figure 27.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 33

-

+

-

pseudovertex (+,-)

w1

w2

Figure 26. Growing the tree
from a simple vertex with

label (+).

w1

+

-

+

pseudovertex (+,-)

u

w2

Figure 27. Growing the tree
from a simple vertex with

label (−).

Case 2: Scanning a pseudovertex u with both labels, (+) and (−).
Since u has both labels, we can consider edges in X and X to leave u. By choice, we always
start by using the edges in X before the edges in X. If we can form a blossom using an
edge in X, it creates a nesting of blossoms which is directly replaced in the tree by a new
pseudovertex w, as shown in Figure 28. We stop here; u is considered to be scanned and so
it is deleted from the list of unscanned vertices. If no blossom is formed, we grow the tree
from u, using every edge (u,w) ∈ X, where w ∈ G is not in the tree.

+

+

+

-

-
-

u

pseudovertex w (+,-)

Figure 28. Nesting of blossoms when scanning pseudovertex u.

Then, we look for blossoms again, but this time, using edges in X. In addition to the
blossoms and nesting of blossoms we have seen, a special type of blossom may appear as in
Figure 29: e = (u,w) ∈ X has already been used when growing the tree from v using edges
in X and now e′ = (u,w) ∈ X is being used. We are joining two vertices from the tree
which both have label (−) using an edge in X, which is consistent to the description in Step
6 when we search for a blossom. It is a special type of blossom as it only consists of two
vertices, but it still forms a nesting of blossoms which is then replaced by a pseudovertex.
If no blossom is formed, we grow the tree from u now using edges in X as in Figure 30.

34 ZOÉ HAMEL

u

pseudovertex v'

+

+

-

-

-
w
-

Figure 29. Special type of blossom.

u
+

-

-

+

+

+

-

Figure 30. Growing tree
from a pseudovertex.

5.3. Proof of the algorithm. To complete our work, we need to prove that the algorithm
terminates (Lemma 5.3), that it creates a tree (Lemma 5.6), and that it finds an alternating
walk between two odd cycles of H if one exists (Theorem 5.11).

Lemma 5.3. Let n be the number of vertices in G, the general graph for which we want to
solve the f -factor problem. The algorithm terminates after at most n-(# of vertices in C1)
applications of step 3.

Proof. There are two instances in which the algorithm can terminate: in Step 6 if there
exists an alternating walk from C1 to Ck or Step 3 if the list of unscanned vertices is empty.
We need to prove that the list of unscanned vertices will ultimately be empty if we never
reach a vertex from Ck (k > 1). Observe that n is finite and that once a vertex is scanned
and deleted from the list of unscanned vertices, it doesn’t reappear in the list later. Every
time a vertex u is being scanned, we end up with two cases:
Case 1 : We can find a blossom containing u as a vertex. Let e = (u,w) be the edge that
closes the blossom. Note that w has to be in the list of unscanned vertices since it is in the
tree but it has not been scanned yet, otherwise e would have already been used from w to u.
A new pseudovertex z is created and added to the list of unscanned vertices while u and w
are deleted from the list. Although we add a new vertex to the total number n of vertices,
we will be deleting 2 vertices from G.
Case 2 : We grow the tree out from u. At the end of step 7, u is deleted from the list of
unscanned vertices while other vertices from G may be added.
As a result, regardless of whether we find a blossom or grow the tree, the number of vertices
which can appear in the list is reduced by 1 every time we return to Step 3. The list of
unscanned vertices will be empty after at most n - (# of vertices in C1) scanning operations.

�

Remark 5.4. Note that each vertex of G can get at most two labels, (+) and (−). Each
time we grow the tree to a new vertex, it gets at least one new label. Therefore, an easy
upper bound on the number of relabelling to terminate the algorithm is 2n.

The next two lemmas prove how nesting of blossoms appear in the graph constructed from
our algorithm and that this graph is indeed a tree.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 35

Lemma 5.5. Let B, B′ be two blossoms with pseudovertex b and b′ respectively. If B and B′

have a vertex in common then we will have one of the two pseudovertices, say b, contained
in the other one, b′.

Proof. Let B and B′ be two blossoms with b and b′ as their respective pseudovertex. Note
that in the algorithm, blossoms are created one at a time so we can assume, without loss
of generality, that B is formed first. Then all the vertices of B are represented by its
pseudovertex b. Since B and B′ have at least one vertex in common, say u, then u is now
represented by b. Consequently, when B′ is formed, it is shrunk to its pseudovertex b′ which
represents all the vertices of B′ including the pseudovertex b. Therefore, the pseudovertex
b is now contained in b′ and does not appear in the shrunken tree when the algorithm
terminates. �

Lemma 5.6. The algorithm creates a tree.

Proof. Recall that a tree is a connected graph with no cycles (loops being considered as
cycles). We need to check that the graph generated by the algorithm growing from vertex
r is a tree and therefore will not contain any cycles when the algorithm terminates. It is
sufficient to prove that every cycle generated by the algorithm is a blossom and becomes a
pseudovertex.
First consider the case where the cycle is a loop. In the algorithm, loops can only be created
at step 6. However, the vertex where the loop appears, say w, is directly replaced by a
pseudovertex. Therefore, the graph created will not contain any loops.
Now, let’s consider the case where we have a cycle of length greater than 1. Such cycle
appears when we join two vertices u and v such that they already both belong to the tree;
this only happens when we search for blossoms in step 5. Hence, since blossoms are reduced
to pseudovertices, no cycle formed by the algorithm will survive. �

Now we prove some results about alternating walks in our tree. Those results will be
needed to prove that the algorithm works in Theorem 5.11.

Lemma 5.7. Let u be a pseudovertex with true base b, where b 6= r. Every alternating walk
from b to v ∈ u starts with the same operation.

Proof. Let u be a pseudovertex with true base b, where b 6= r. By contradiction, assume that
there exist an alternating walk from b to v ∈ u starting in addition and another alternating
walk from b to v′ ∈ u starting in subtraction. It implies that b has both labels and therefore
is itself a pseudovertex. This is a contradiction since b is the true base of u. If u is the
pseudovertex representing r this lemma will not hold since r does not have a defined true
base. �

Lemma 5.8. Let u be a pseudovertex with true base b, where b 6= r, and v be any vertex
in u. In the initial general graph G∗, there exists at least two alternating walks from b to v:
one ending in addition and another one ending in subtraction.

Proof. Consider the blossom B represented by the pseudovertex u with true base b. We will
use induction on the steps of the algorithm. It is trivially true at step 1. It is sufficient

36 ZOÉ HAMEL

to consider step 5 when u is formed. Following the algorithm, the blossom B is formed by
joining two directed paths in the tree which have b as a common vertex. Let the two paths P1

and P2 respectively be b, e1, u1, e2, u2, ..., el, ul and b, e′1, v1, e
′
2, v2, ..., e

′
k, vk and let e ∈ X be

the edge joining ul to vk as in Figure 31. By induction hypothesis, there exists an alternating
walk from b to ul and another one from b to vk such that they both end in addition. Now
consider an arbitrary vertex uz 6= b of u. Without loss of generality, let uz be in P1. We will
be looking at the two walks W1 and W2 respectively defined by b, e1, u1, e2, u2, ..., ez, uz and
b, e′1, v1, e

′
2, v2, ..., e

′
k, vk, e, vl, el, ...ez+1, uz. The same argument holds for the dual.

e1

e2 er

b

e'1

e'2 e's

e

...

...

u1 ul

v1 vk

u

r ...

Figure 31. Nesting of blossoms when scanning pseudovertex u (b 6= r).

Firstly, assume that every vertex in the pseudovertex u is simple. Then, by the algorithm,
b, e1, u1, e2, u2, ..., el, ul and b, e′1, v1, e

′
2, v2, ..., e

′
k, vk are two alternating walks. Moreover, since

ul and vk have label (+) and can only have one label, both alternating walks given above
must end in addition. The walk W1, defined by b, e1, u1, e2, u2, ..., ez, uz, is obviously an
alternating walk since it is the first part of the given alternating walk from b to ul. With-
out loss of generality assume that ez ∈ X, so W1 ends in subtraction. Now, let’s look
at walk W2. Since b, e′1, v1, e

′
2, v2, ..., e

′
k, vk is an alternating walk ending in addition and

e ∈ X, b, e′1, v1, e
′
2, v2, ..., e

′
t, vt, e, un is an alternating walk ending in addition. Moreover,

b, e1, u1, e2, u2, ..., el, ul is an alternating walk itself, with el ∈ X, el−1 ∈ X, el−2 ∈ X,...,ez+1 ∈
X. Those edges can thus be added in this specific order at the end of the alternating walk
b, e′1, v1, e

′
2, v2, ..., e

′
k, vk, e, ul to obtain the desired alternating walk W2 ending in subtraction.

So we have two alternating walks in u from b to ur: W1 ending in addition and W2 ending
in subtraction. The dual holds.

Now assume that one of the vertices in the pseudovertex u is itself a pseudovertex, say us.
Without loss of generality, let us be in W1 to give b, e1, u1, e2, u2, ..., es, us, es+1..., ez, uz. Ob-
serve that es hits us at its true base, say bs, and es+1 hits us at ws, any vertex of G in the
blossom represented by us. By induction hypothesis there is an alternating walk from b to
bs and, by Lemma 5.8, we can choose to extend this alternating walk from bs to ws such that
it starts and ends with the appropriate operation to continue the alternating walk at es+1.
In other words, we can expand the pseudvertex us and replace it by a particular alternating
walk in W1. This induction can be done at each pseudovertex of the walks W1 and W2. Note

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 37

that by induction hypothesis, by expanding the pseudovertices in W1 we have an alternating
walk from b to uz. Without loss of generality, assume that it ends in addition. For W2,
expand all the pseudovertices of the walk ur, er+1, ..., en, un in the same manner to get an
alternating walk with only simple vertices. Add the expanded version in the opposite order
to the alternating walk from b to vk joining vk to ul with e. Similarly to the case with simple
vertices, we obtain the second alternating walk from b to uz such that it ends in subtraction.
The dual holds.

Finally, consider the case where vz = b and b 6= r. Then by Lemma 5.7, we know that e1

and e′1 belong to the same class, say X. Since b is a true base, it initially is a simple vertex so
it can only have label (+), and only can leave with vertex in X when we grow the tree before
forming the blossom. However, we know that v1 is reachable from b by an alternating walk
ending in addition, and e′1 cannot have been used. We can therefore extend this alternating
walk by adding the edge e′1 = (v1, b). Therefore, b is now reachable by an alternating walk
starting from b and ending in subtraction, and thus, b also obtain both labels (+) and (−).
Consequently, b can also be left using both type of edges x and X as all the other vertices
of the blossom. If b = r = C1, then studying the blossom to show that we can leave r using
both class of vertices is irrelevant since r originally has both labels already. �

Lemma 5.8 proves that it is reasonable to replace a blossom by a pseudovertex and giving
it both labels since every vertex can be reach by an alternatinng walk ending in the operation
of our convenience. In other words, the tree can be grown by using both type edges from
any vertex inside the pseudovertices. Hence, in the tree, it is simpler to have one unique
pseudovertex. Now that we have explored the structure inside the pseudovertices, we are
ready to prove that the algorithm accomplishes what we want: if there is an alternating
walk between C1 and another odd cycle Ck in G, we will find a directed path from C1 to a
vertex of Ck in the tree.

Lemma 5.9. Let v ∈ V (G) such that v 6∈ C1. If v has label (+), then there exists an
alternating walk from C1 to v ending in addition. The dual holds.

Proof. Assume that v 6∈ C1. Since v has label (+), it belongs to the tree and so there is a
directed path from r to v, where r is the vertex representing C1, the true base of the base
of the tree. Let r, e1, v1, e2, v2, ..., ek, v be a specific directed path in the tree. If there is no
pseudovertex, then this path directly corresponds to the alternating walk in G from r to
v ending in addition, using the exact same vertices. Now, assume that the path contain
a pseudovertex, say vl. Then, by Lemma 5.8, we know that there exists an alternating
walk ending in the appropriate operation from the true base of the blossom hitting by
el−1 to the vertex wt ∈ vs of G which is hit by el. That is, if el ∈ X, we choose the
alternating walk ending in addition, while if el ∈ X we choose the one ending in subtraction.
We can then replace vl by the appropriate alternating walk and repeat this process for
all pseudovertices on the path. Once every pseudovertex is expanded and replaced by the
appropriate alternating walk, we obtain an alternating walk in G from r to v ending in

38 ZOÉ HAMEL

addition. Note that r and v might themselves be inside pseudovertices and that r needs to
be replaced by the vertex of C1 corresponding to the original end of the edge e1. �

Lemma 5.10. Let v ∈ V (G) such that v 6∈ C1. If there exists an alternating walk in G from
r to v in G ending in addition, then v has label (+) when the algorithm terminates at Step
3. The dual holds.

Proof. Let the alternating walkW inG from r to v ending in addition be v1, e1, v2, e2, v3, ..., en, v.
We want to show by contradiction that v will obtain the label (+) if the algorithm terminates
at Step 3. We say that a vertex u in G has the appropriate label if it indeed corresponds
to the fact that u is reachable from r by addition if it has label is (+) and by subtraction
if it has label (−). Assume that vp and all previous vertices in W have the appropriate
label. Without loss of generality, say that vp has label (+), implying that ep ∈ X in W .
Therefore, by the assumption we made, vp+1 is reachable by an alternating walk ending in
subtraction and should have label (−). Suppose, by contradiction, that vp+1 does not have
its appropriate label (−). Then, vp+1 does not have any label or it has label (+).

First, assume that vp+1 does not have any label. Note that when the algorithm termi-
nates at Step 3, every vertex of the tree has been scanned. Hence, vp has been scanned. If
ep = (vp, vp+1) ∈ X is still in G∗ when we grow the tree from vp, it would be used to give
vp+1 label (−). This is a contradiction. Therefore, ep has been used and deleted from G∗.

We can now assume that ep ∈ X has already been used to grow the tree, but vp+1 still
doesn’t have label (−). Thus, the only way that ep may have been used was in growing the
tree is from vp+1 to vp giving vp label (−). Thus vp+1 has to have label (+) and vp is therefore
inside a pseudovertex, say vp′ , since it has both labels (+) and (−). We get p(v′p) = vp+1

in the tree. Note that vp 6∈ C1 as the vertex representing C1 does not have a predecessor.
Moreover, vp has to be the true base of vp′ since vp+1 only has label (+) and p(v′p) = vp+1.

Since vp′ 6∈ C1, there is a vertex vq ∈ W such that vq is not in vp′ , but vq+1, vq+2, ..., and vp
are in vp′ . By assumption, since it precedes vp in W , vq has its appropriate label, say (+),
and so eq ∈ X. Assume that eq has not been used. Since vq+1 belongs to the pseudovertex
vp′ , it has both label (+) and (−), and therefore eq would be used in Step 5 to create a
blossom. However, this is a contradiction since, by assumption, vq does not belong to the
same pseudovertex as vq+1. Therefore, the edge eq has been used in the tree.

If eq has been used in the tree to give vq+1 label (+), then p(v′p) = vq, which is a con-
tradiction since p(v′p) = vp+1. Note that, by construction, we cannot have vq = vp+1 since
vq precedes vp in W while vp+1 comes after vp, and vp+1 cannot be in a blossom. The only
case in which we could have vq = vp+1 is if it was the vertex of an edge being used twice,
implying that it would be inside a blossom.

Therefore, eq has been used to give vq label (−). We then get that vq is now itself the
base of another pseudovertex, say v′q, and p(vq′) = vp′ in the tree. If we repeat this process
by looking at the vertex vz 6∈ v′q in W such that vz+1, vz+2, ..., and vq are in v′q, we will
find that vz is the base of a pseudovertex, vz′ such that p(vz′) = vq′ . By induction, we will
eventually have to either hit v1 in W or the pseudovertex containing it in the tree. But
then, by repeating this process, we would conclude that v1 is in a pseudovertex which has a

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 39

predecessor as well. This is our final contradiction (Figure 32). Therefore, vp+1 has to have
its appropriate label and, by induction, v will have the appropriate label S. �

v

vp
vq

v1

...

...

...

vp+1

Appropriate label

Not appropriate label

+

-

Figure 32. The alternating walk in G.

vp vq rvp+1
ep eq

v'p v'q

+
+,- +,-

...

Figure 33. Contradiction in the structure of the tree.

From those two Lemmas 5.9 and 5.10, we can deduce Theorem 5.11 to prove that the
algorithm works:

Theorem 5.11. There is an alternating walk from C1 to any vertex in Ck (k > 1) if and
only if there is a directed path in the tree from the root r, a pseudovertex of C1, to any vertex
of Ck.

In order to remove every vertex disjoint odd cycle of H, we need to find t/2 alternating
walks, where t is the number of vertex disjoint odd cycles. If we are able to do so, we have
an f -factor. Recall that if t is odd, by Remark 4.9, we know that G cannot have an f -factor
without using the algorithm. However, as desired, the algorithm will claim the same result
as we will be unable to remove all vertex disjoint odd cycles of H since we remove them
in pairs. There will always be a cycle Ci for which the algorithm terminates at Step 3. In
the next section, we will prove that when there is an odd cycle of H for which we failed
at finding an alternating walk joining to another vertex disjoint odd cycle still in H - the
algorithm terminates at Step 3 - we indeed have an f -barrier.

6. f-barrier

Let H consists of the disjoint odd cycles C1, C2, ..., Ct. Assume that there is an odd cycle
in H, say C1, for which there is no alternating walk joining one of its vertices to any cycle Ck

(k > 1). We then claim that there is no f -factor in G. The goal of this section is to define
the f -barrier, the partition of V (G) which contradicts Tutte’s characterization, equation (3).

40 ZOÉ HAMEL

According to Anstee, we can look at the partition S, T, U of V (G) defined as follows.
Let S be the set of vertices reachable from C1 by an alternating walk ending in addition
only (label (+)). Let T be the set of vertices reachable from C1 by an alternating walk
ending in subtraction only (label (−)). Let U be the set of the remaining vertices of G and
decompose U into two subsets: W and L. Let W be the set of vertices reachable from C1

by an alternating walk ending in addition and by an alternating walk ending in subtraction
(labels (+) and (−)). Finally, let L be the set of vertices not reachable from C1 (no label).
By assumption, there is no alternating walk between C1 and Ck for all k > 1, therefore
C2, ..., Ct ∈ L. This partition has the following properties [2]:

Property 1 For all edges joining a vertex of S to a vertex of (S ∪ L), x(e) = 0.

Proof. Let e = (i, j) such that i ∈ S and j ∈ (S ∪ L). By contradiction, suppose that
x(e) ≥ 1 in G and so e ∈ X in G∗. There are two cases: either j ∈ S or j ∈ L. If e has
not been used, since i ∈ S, then we can use e to reach j from C1 with an alternating walk
ending in subtraction, giving j label (−). This is a contraction since j ∈ S or j ∈ L. If
e has been already been used, it would have given label (−) to either i or j , which is a
contradiction. �

Property 2 For all edges joining a vertex of T to a vertex of (T ∪ L), x(e) = λ(e).

Proof. Similar to the proof of Property 1. �

Property 3 There are no edges in G joining a vertex in W to a vertex in L.

Proof. By contradiction, let e = (i, j) be an edge such that i ∈ W and j ∈ L. Then either
e ∈ X or e ∈ X in G∗. Since i ∈ W , if e has not been used, it will be used to grow the tree
from i and give j label (−) or (+) depending on the class of e. This is a contradiction since
j ∈ L. Note that since j ∈ L, the edge cannot have been used from j to i since the vertex j
will never be part of the tree, as it is not reachable from C1. �

We say that a subgraph of G is induced by the vertex set X ⊆ V (G) when its vertex set
is X and its edge set consists of the edges of G joining vertices of X. Consider the subgraph
of G induced by the vertices of W and denote its components U1, U2, ..., Ul. Note that a set
Uk corresponds to the set of vertices represented by a pseudovertex in the tree or the union
of such sets if a pseudovertex is the predecessor of another one in the tree. Every vertex of
C1 is in W , and so C1 has to be a subset of one of the components Ui; let C1 ⊆ U1. We can
derive a few more properties of the partition [2]:

Property 4 For all edges joining a vertex in U1 to a vertex in S, x(e) = 0.

Proof. Let e = (i, j) such that i ∈ U1 and j ∈ S. By contradiction, suppose that x(e) ≥ 1 in
G and so e ∈ X in G∗. Since i ∈ U1 ⊆ W , then i is reachable from C1 by an alternating walk
ending in addition. Thus, if e has not already been used when we grow the true from i, it
would be used to give j label (−); so j has label (+) and (−). This is a contradiction since
j ∈ S. Therefore, e has been used before to give i label (−). But this is a contradiction,

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 41

because it would imply that j is a predecessor of a pseudovertex in U1, but by construction
every predecessor of a pseudovertex in U1 is in W . �

Property 5 For all edges joining a vertex in U1 to a vertex in T , x(e) = λ(e).

Proof. Similar to the proof of Property 4. �

Property 6 The same is true for each Uk (k > 1) with the exception of exactly one edge
for each component. Either there is an edge e = (i, j) with i ∈ Uk, j ∈ S such that x(e) = 1
or there is an edge e = (i, j) with i ∈ Uk, j ∈ T such that λ(e)− x(e) = 1.

Proof. We can use a similar argument as the one used for Property 4 and 5. Assume that
there is an edge e = (i, j) with i ∈ Uk, j ∈ S such that x(e) ≥ 1, and so e ∈ X in G∗. Then,
when we grow the tree from the pseudovertex containing i, if e has not been used, it would be
used to give j label (−). This is a contradiction. Now assume that j ∈ T . Similarly, if e has
not been used, it would be used to give j label (+) and reach a contradiction. Therefore,
we can assume that e has been used before to give i label (−). Since Uk is the set of
vertices represented by one pseudovertex or several pseudovertices appearing consecutively
in our tree, there exists exactly one edge (i, j) where i ∈ Uk and j ∈ S or T entering the
component Uk. Therefore, this edge is the exceptional edge for each component Uk (k > 1)
which doesn’t satisfy Property 4 or 5 depending whether j ∈ S or j ∈ T . �

Table 1 summarizes the properties of the entries of the the adjacency matrix of the fractional
f -factor B obtained when the algorithm ends.

S T L U1 U2 ... Ul

S empty * empty empty mostly empty

T * full full full mostly full

L empty full * 0 0

U1 empty full 0 * 0

U2 mostly
empty

mostly
full

0 * 0

... 0 * 0

Ul 0 *

Table 1. Summary of the Properties 1-6.

Based on the entries of Table 1, we want to prove that the partition S, T, U is indeed an
f -barrier. First, we can compute tT,S̄ for the directed f -factor B using equation (12), where

42 ZOÉ HAMEL

aij is the entry of AB:

tT,S̄ =
∑
i∈T̄
j∈S

aij +
∑
i∈T
j∈S̄

(λ(ij)− x(i, j)) = l − 1. (13)

By equation (11) we can also write

tT,S̄ =
∑
i∈S

f(i) +
∑
i∈T
j∈S̄

(λ(ij))−
∑
i∈T

f(i) (14)

=
∑
i∈S

f(i) +
∑
i∈T

(degG(i)− f(i))− e(S, T) (15)

(16)

since
∑

i∈T
j∈S̄

(λ(ij)) = e(S, T) and, for i ∈ T ,
∑

i∈T
j∈S∪S̄

(λ(ij)) = degG(i).

We want to show that each Ui is an odd components. Then, we will have q(S, T) ≥ l,
and so

∑
i∈S f(i) +

∑
i∈T (degG(i)− f(i))− e(S, T) = l− 1 ≤ q(S, T) contradicting equation

(3); hence proving that no f -factor can exist and the the partition described above is an
f -barrier. Recall that C is an odd component if

∑
i∈C f(i) + e(C, T) ≡ 1 (mod 2), and note

that it is the same as
∑

i∈C f(i)− e(C, T) ≡ 1 (mod 2).

First, to show that U1 is an odd component we use the fact that the odd cycle C1 of half
edges is in U1. Then, we have

∑
i,j∈U1

aij ≡ 1 (mod 2) and by using the properties of the
partition proved above we get:∑

i∈C

f(i)− e(C, T) ≡
∑
i∈U1
j∈U1

aij +
∑
i∈U1
j∈S

aij −
∑
i∈U1
j∈T

(λ(ij)− aij) (mod 2) (17)

≡ 1 + 0 + 0 (mod 2) (18)

≡ 1 (mod 2) (19)

(20)

Hence, U1 is an odd-component.

Now, to show that Uk for 2 ≤ k ≤ l is an odd-component, we first observe that
∑

i,j∈Uk
aij ≡

0 (mod 2) since there is no half edges, and so every edge inside Uk counts for 2 towards
the sum of the degrees. Moreover, we know from Table 1, that either (1)

∑
i∈Uk
j∈S

aij = 1,∑
i∈U1
j∈T

(λ(i, j)− aij) = 0 or

(2)
∑
i∈Uk
j∈S

aij = 0,
∑
i∈Uk
j∈T

(λ(ij)− x(i, j)) = 1.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 43

Therefore, ∑
i∈Uk
j∈S

aij +
∑
i∈Uk
j∈T

(λ(ij)− x(i, j)) = 1.

Then, we get:∑
i∈C

f(i)− e(C, T) ≡
∑
i∈Uk
j∈Uk

aij +
∑
i∈Uk
j∈S

aij −
∑
i∈Uk
j∈T

(λ(ij)− aij) (mod 2) (21)

≡ 0 + 1 (mod 2) (22)

≡ 1 (mod 2) (23)

(24)

Hence, for 2 ≤ k ≤ l, Uk is an odd-component.

The partition of the vertices of G into S, T, U is therefore an f -barrier. It is worth noting
that finding an f -barrier using the algorithmic proof given by Anstee is more restrictive than
finding a partition contradicting Tutte’s characterization only, equation (3). Any f -barrier
created using the partition described above will contradict Tutte’s characterization, however
it is assuming that G has a directed f -factor, and so equation (5) always holds. There may
be other partition of the set G contradicting Tutte’s characterization, equation (3) but for
which equation (5) does not hold.

7. Specialization to 1-factors and generalization to the (g, f)-factors

In this section, we start by investigating a special case of the f -factor problem where f ≡ 1
before exploring a general case of the f -factor problem, called the (g, f)-factor problem. In
both situations, we want to see how Anstee’s technique can be applicable.

7.1. The 1-factor problem. Consider the f -factor problem where f ≡ 1. First, we can
note that a 1-factor F cannot have multiple edges or loops since we have degF (i) = 1 for all
i ∈ V (G). Therefore, when starting with a general graph G, we can restrict the study to its
subgraph G′ obtained by removing loops and replacing the multiple edges by a single edges.
This graph G′ is called the underlying subgraph of G. Therefore, a general graph G has a
1-factor if and only if its underlying subgraph G′ has a 1-factor. One of the most important
results in factor theory is Tutte’s 1-factor Theorem 7.1 in which he gives a characterization
of graphs for which there exists a 1-factor.

Theorem 7.1. (The 1-Factor Theorem, [11]) A general graph G has a 1-factor if and
only if

odd(G− S) ≤ |S| for all S ⊂ V (G)

where odd(G− S) = the number of odd components of G− S.

44 ZOÉ HAMEL

We now want to see how Anstee’s approach can be used to solve the 1-factor problem for
a general graph G. Starting with the underlying subgraph G′ of G, we look for a directed
1-factor B in D(G′). Since there are no loops, if B exists, the entries of AB are all 0’s on the
diagonal and either 0, 1/2, or 1 off the diagonal. Next, we symmetrize the matrix AB to get
a symmetric directed f -factor such that AF = (AB +AT

B)/2. Observe that the only possible
entries are still 0 on the diagonal and 0, 1/2, or 1 off the diagonal. However, since the row
and column sums equal 1, each row and column of AF has either a single entry 1 with the
remaining entries all 0’s, or two entries 1/2 with the remaining entries all 0’s. Therefore,
when we form the general graph H, as described in Section 4, each vertex i ∈ V (H) has
degree 2; that is, each component of H is a cycle. Since even cycles are particular cases
of even length closed trails, they can be removed as done in Section 4 by alternatively add
1/2 and subtract 1/2 from the edges. Then, only the vertex disjoints odd cycles remain in H.

In order to remove the vertex disjoint odd cycles in H by pair, we look for alternating walks
as we did before. We create the general auxiliary graph G∗. However, since for all e 6∈ E(H),
λ(e) = 1 and x(e) = 0 or x(e) = 1, then G∗ does not contain any multiple edges. Each
edge e in G′ is translated by exactly one edge in G∗: if x(e) = 1, we have e ∈ X in G∗

and if x(e) = 0, we have e ∈ X in G∗. Therefore, we will only have alternating paths and
no alternating walks; blossoms in which an edge is used twice will not appear in this case.
Therefore, Anstee’s approach is reduced to an easier case than for the f -factor problem
(when f 6≡ 1) as we are looking at a graph without multiple edges or loops making the
algorithm a little bit simpler. Note the difference with Edmond’s blossom algorithm: we
only need alternating path not necessarily augmenting paths.

7.2. The (g, f)-factor problem. While a 1-factor is a special case of an f -factor, an f -
factor is itself a special case of the (g, f)-factor where f ≡ g. We define a (g, f)-factor F of
a general graph G as a subgraph F of G such that

g(i) ≤
∑

j:(i,j)∈E(F)

x(i, j) ≤ f(i) ∀i ∈ V (G)

where g, f : V → Z+, g(i) ≤ f(i) for all i ∈ V (G) and x(e) ∈ Z. If we drop the requirement
x(e) ∈ Z, we say that F is a fractional (g, f)-factor of G. In this section, we show that a
(g, f)-factor problem can be solved using Anstee’s approach by making a few changes in the
algorithm. Anstee gives the following theorem [2]:

Theorem 7.2. (Anstee, [2]) Let G be a general graph on n vertices. Then G has a (g, f)-
factor if and only if there is a directed (g, f)-factor and there is no (g, f)-barrier.

We start with the general graph G, for which we want to solve the (g, f)-factor. We associate
the network flow Q(G) to G the same way we did for the f -factor problem except that we
impose lower bounds, l, on the flow function x. On the edges from s to Ri and from Si to
t, we have l(i) = g(i) for i = 1, 2, ..., n as in Figure 34.

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 45

R1

R2

R3

R5

R4

S1

S2

S3

S5

S4

TS

g(
1)
,f(
1)

g(2
),,
f(2
)

g(3),f(3)

g(4),f(4)g(5),f(5)

g(
5)
,f(
5)

g(4
),f(
4)

g(3),f(3)

g(2),f(2)

g(1),f(1)

Figure 34. Network Q(G) for the (g, f) factor problem.

Consider the directed graph, D(G), associated to G such that AG = AD(G). We define
a directed (g, f)-factor of D(G) as a subgragh B of D(G) where the adjacency matrix
of B, AB, has row and column sums, r(i) and c(i), satisfying g(i) ≤ r(i) ≤ f(i) and
g(i) ≤ c(i) ≤ f(i). Similarly to the approach used for the f -factor problem, we want to find
a directed (g, f)-factor of D(G) by finding an integral flow of the size h(1) +h(2) + ...+h(n)
where g(i) ≤ h(i) ≤ f(i) for all i = 1, 2, ..., n. The following theorem about the existence of
a (g, f)-factor is a generalization of Theorem 4.5:

Theorem 7.3. Let G be a general graph. There is a directed (g, f)-factor in D(G) if and
only if ∑

i∈S

f(i) +
∑
i∈T

j∈(T∪U)

λ(i, j) ≥
∑
i∈T

g(i) (25)

for all partitions S, T , U of {1, 2, ...n}.

If D(G) doesn’t have a directed (g, f)-factor, then G doesn’t have a (g, f)-factor and the
problem is solved. Otherwise, we proceed as we did in the f -factor problem: we transform
B into a fractional (g, f)-factor and then we attempt to transform it into a (g, f)-factor.

Firstly, we obtain a fractional (g, f)-factor F by taking AF = (AB + AT
B)/2. We then form

the same general graph H as before. We need to be a little bit more careful than with the
fractional f -factor as the row and column sums of AF do not have to be integral. If the ith

row (and column) sum of AF is not integral, it means that its number of half integer entries
is odd and therefore degH(i) is odd. Therefore, by Lemma 4.6, H may now have path joining
two vertices of odd degree in addition to even length closed trails and vertex disjoint odd
cycles.

46 ZOÉ HAMEL

We start the transformation of AF by making every row and column sums integral. This can
be done by using the same method as the one used to remove the even length closed trails
in H; that is, by alternatively adding 1/2 and subtracting 1/2 from the edges of the paths
joining two vertices of odd degree. Then, as desired, only the degree of the end vertices will
change to become integral. Once this is done, we can remove the even length closed trails
as in the f -factor problem. We are only left with the vertex disjoint odd cycles in H.

To remove those vertex disjoint odd cycles with alternating walks, we need to make a slight
change in the algorithm given in Section 5. The general auxiliary graph G∗ will now have
fake loops. We define a fake loop as a loop in G∗ which doesn’t come from the direct trans-
lation of a loop in G. In addition to the loops in G∗ directly translated from the loops in G
such that e = (i, i) ∈ X in G∗ when x(e) ≥ 2 and e = (j, j) ∈ X in G∗ when λ(e)−x(e) ≥ 2,
we add fake loops in the following manner:
(1) if

∑
j∈V (G)

x(i, j) > g(i), then we add a loop e ∈ X at the vertex i;

(2) if
∑

j∈V (G)

x(i, j) < f(i), then we add a loop e ∈ X at the vertex i.

Fake loops are necessary to terminate an alternating walk at the vertex i by decreasing (or
increasing) the degree of i by 1 when g(i) < r(i) (or r(i) < f(i)); that is, when changing
the degree of i doesn’t affect the inequality g(i) ≤ r(i) ≤ f(i). They will act as a vertex
disjoint odd cycles of H and, when used, will let the algorithm terminate as if an alternating
walk was found. However, observe that by using the fake loop e = (i, i), the degree of the
vertex i will change by 1 depending on the class of e. When finishing an alternating walk
at a vertex i using the fake loop e = (i, i) ∈ X, degG(i) increase by 1, but the inequality
g(i) ≤ r(i)(≤ f(i)) is preserved (dual holds). Without using fake loops, the algorithm would
fail at removing certain vertex disjoint odd cycles of H. Note that in the case of the (g, f)-
factor problem, the vertex disjoint odd cycles are not necessarily removed by pair.

If we are able to remove all the vertex disjoint odd cycles of H, we solved the problem
by finding a (g, f)-factor. Otherwise, we can find a (g, f)-barrier with the same partition
S, T, U as in Section 6. From the properties proved in Section 6, we deduce the three fol-
lowing properties:

Property 1’: For all vertices i ∈ S, degF (i) = f(i).

Proof. Let i be a vertex in S. Since g(i) ≤ degF (i) ≤ f(i), assume by contradiction that
degF (i) < f(i). Then, there is a fake loop e = (i, i) ∈ X in G∗. Assume that e has not been
used. Then, since i ∈ S, when we grow the tree from i we can use e in order to remove the
odd cycle C1. This is a contradiction. Note that e cannot have already been used otherwise
the algorithm would have ended, since as soon as a fake loop is used we can terminate the
algorithm and remove C1. Therefore, deg(i) = f(i). �

Property 2’: For all vertex i ∈ T , degF (i) = g(i).

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 47

Proof. Similar to the proof of Property 1′. �

Property 3’ For all vertex i ∈ Uk, g(i) = deg(i) = f(i).

Proof. Let i be a vertex in Uk. By contradiction, assume that g(i) 6= f(i). Then, either (1)
deg(i) > g(i) or (2) deg(i) < f(i).
Case 1 : Suppose that deg(i) > g(i). Then there is a fake loop e = (i, i) ∈ X in G∗. Since
i ∈ T , it has label (−) and e can be used to terminate the algorithm and remove the odd
cycle C1. This is a contradiction.
Case 2 : Suppose that deg(i) < f(i). Then there is a fake loop e = (i, i) ∈ X in G∗. Since
i ∈ S, it has label (+) and e can be used to terminate the algorithm and remove the odd
cycle C1. This is a contradiction. �

Using those properties, we can prove that the partition S, T, U is a (g, f)-barrier since it
can be used to prove that no (g, f)-factor can exist. We use the same approach as for the
f -barrier and start by deducing the following result for a fractional (g, f)-factor B:

tT,S =
∑
i∈T
j∈S

bij +
∑
i∈T
j∈S

(cij − bij)

=
∑
i∈T
j∈S

bij −
∑
i∈T
j∈S

bij +
∑
i∈T
j∈S

cij

= (
∑
i∈T
j∈S

bij +
∑
i∈T
j∈S

bij −
∑
i∈T
j∈S

bij)− (
∑
i∈T
j∈S

bij +
∑
i∈T
j∈S

bij −
∑
i∈T
j∈S

bij) +
∑
i∈T
j∈S

cij.

Using the fact that B is symmetric, properties deduced in Section 6 and the ones just proved
above on the degree of the vertices of S, T , terms cancel out and we obtain the following
equality:

tT,S =
∑
i∈S

f(i) +
∑
i∈T
j∈S

cij −
∑
i∈T

g(i) = l − 1. (26)

Observe that for B, using the partition constructed based on the label given to each vertex
when the algorithm terminates, the expression of tT,T is maximize. Therefore, for any
symmetric directed (g, f)-factor F such that AF = aij, we have:∑

i∈T
j∈S

aij +
∑
i∈T
j∈S

(cij − aij) ≤
∑
i∈S

f(i) +
∑
i∈T
j∈S

cij −
∑
i∈T

g(i). (27)

With the same reasoning as in the proof of the f -barrier in Section 6, we also deduce that:∑
i∈T
j∈S

aij +
∑
i∈T
j∈S

(cij − aij) ≥ l. (28)

48 ZOÉ HAMEL

But this is a contradiction with equation (26); therefore, no (g, f)-factor can exist and so
the partition S, T, U is indeed an f -barrier.

The following theorem follows from Theorem 7.2 and provides three situations where
(g, f)-factors directly arise from the existence of a fractional (g, f)-factor. It uses the three
properties given above. An independent vertex set in a graph, is a subset of the vertices such
that no two vertices of this subset are joined by an edge. We define a (general)bipartite graph
as a (general) graph G for which the set of vertices V (G) is partitioned into two disjoint
independent vertex sets X1 and X2; that is, X1 ∪ X2 = V (G) and X1 ∩ X2 = ∅. We also
denoted Gn, the subgraph of G induced by the set of vertices {v ∈ V (G) : degG(v) = n} and
Gf=g, the subgraph of G induced by the set of vertices {v ∈ V (G) : g(v) = f(v)}

Theorem 7.4. (Anstee) Let the general graph G and the functions f, g be given such that
it satisfies one of the properties I-III. Then, G has a (g, f)-factor if and only if it has a
fractional (g, f)-factor.
Property I: Gg=f is bipartite.
Property II: g(i) < f(i) for i = 1, 2, ..., n.
Property III: f ≡ g,

∑
i∈V

fi ≡ 0 (mod 2) and every pair of vertex disjoint odd cycles are

joined by an edge.

Proof. Property I : Assume that G has a fractional (g, f)-factor F and Gg=f is bipartite. As-
sume that the general graph H constructed from F has at least one vertex disjoint odd cycle
C1. Let C1 be cycle from which we start growing the tree in order to try to remove it from
H using the algorithm. By construction of the partition, C1 ∈ Uk for some k. Moreover, by
Property 3′, every vertex i ∈ C1 satisfies g(i) = deg(i) = f(i). Hence, C1 ∈ Gg=f . But this
is a contradiction since Gg=f is bipartite and a general bipartite graph doesn’t contain any
odd cycles. Therefore, H doesn’t have any vertex disjoint odd cycle and so the fractional
(g, f)-factor F can be transformed into a (g, f)-factor simply by making all row and column
sums integral and removing the even length trails of H.

Property II : Assume that G has a fractional (g, f)-factor and that g(i) < f(i) for i =
1, 2, ..., n. Assume that the general graph H constructed from F has at least one vertex dis-
joint odd cycle C1. Let C1 be cycle from which we start growing the tree in order to try to
remove it from H using the algorithm. By construction of the partition, C1 ∈ Uk for some k.
But since g(i) < f(i) for i = 1, 2, ..., n, there is not vertex i such that g(i) = degF (i) = f(i).
Hence, by property 3′, the set W = U1 ∪ U2 ∪ ... ∪ Ul is empty. This is a contradiction.
Therefore, H doesn’t have any vertex disjoint odd cycle and so the fractional (g, f)-factor
F can be transformed into a (g, f)-factor.

Property III : Assume that G has a fractional (g, f) factor, f ≡ g,
∑

i∈V f(i) ≡ 0 (mod 2),
and every pair of vertex disjoint odd cycles are joined by an edge. Since f ≡ g, we have a

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 49

fractional f -factor. Moreover, since
∑

i∈V fi ≡ 0 (mod 2), by Remark 4.9, H has an even
number of odd cycles. And finally, since every pair of disjoint odd cycles are joined by an
edge, all the vertex disjoint odd cycles of H can be removed.

�

8. Another strategy: reducing an f-factor problem to a matching problem

In this section, we mention another approach to the f -factor problem for a general graph
G on n vertices. Instead of having to directly solve the f -factor problem as Anstee did,
Gabow proved that it is possible to reduce any f -factor problem into a matching problem.
Once in a matching problem situation, well-known methods to solve matching problems can
be used.

First, Berge showed that an f -factor problem can be transformed into a matching problem
by replacing each vertex i ∈ V (G) by a substitute S. The substitute S, replacing i ∈ V (G)
with degG(i) = d, is composed of two independent sets of vertices: V1(S) has (d − f(i))
internal vertices and V2(S) has d external vertices, as indicated in Figure 35. Note that
S is a complete bipartite graph, meaning that any pair of vertices such that one vertex
is in V1(S) and the other in V2(S) is joined by an edge. We claim that finding a perfect
matching, which is also a 1-factor, in the substitute S, gives i the right degree; that is,
degF (i) = f(i). Since it is a complete bipartite graph, if S has a perfect matching M , then
exactly (degG(i) − f(i)) external vertices have their matched edges in S. We are left with
degG(i)− (degG(i)− f(i)) = f(i) external vertices having their matched edges in G. There-
fore, M does indeed give i the right degree once the substitute S is replaced by the initial
vertex i.

. . .

.

e1 ed

(degG(i)-f(i))
internal vertices

d external vertices

Figure 35. Substitute S for the vertex i.

Although matching problems are generally easier than f -factor problems, we can see here
that when using Berge’s substitute S, the number of vertices added for each vertex of i
is large, making the reduction inefficient. Gabow addressed this issue by proving that an
augmenting path passes through the substitute S at most twice. This observation is analogue

50 ZOÉ HAMEL

to the fact that an edge needs to be used at most twice in an alternating walk (see Remark
5.2). Based on this fact, Gabow gives the method of sparse substitute. It consists in replacing
the substitute S introduced by Berge by a sparse substitute S ′, including less edges. Each
vertex i in the initial general graph G is replaced by a configuration similar to the one shown
in Figure 36. Contrary to the Berge’s substitute S, the construction of a sparse substitute is
defined with respect to a given matching and will change when the matched edges of i change
[8]. Gabow’s method of sparse substitute transform an f -factor problem into a matching
problem without adding too many extra edges, making the reduction efficient. For more
details about the theory of the sparse substitute, see Gabow [8].

External vertex

Internal edge

Figure 36. Sparse substitute S ′ for the vertex i.

9. Applications

In this last section, we will mention a couple a applications of (g, f)-factors and particularly
how properties deduced from Anstee’s algorithmic approach are useful in proving other
theorems. The first application deals with edge colouring problems and the second with
graph decomposition.

9.1. Edge colouring. Let G be a general graph. An edge colouring is a partition of E(G)
into matchings, called colour classes. The chromatic index, denoted χ′(G), is the minimum
number of colour classes in any edge colouring of G. The maximum degree of any vertex
in G is denoted 4(G). Thus, we will always have χ′(G) ≥ 4(G). In this section, we look
at the upper bound on χ′(G) in terms of 4(G) proved by Shannon: χ′(G) ≤ b3

2
4 (G)c.

Lemma 9.1 is a direct consequence of Theorem 7.4 (Property I) and will be used in proving
Shannon’s bound in Theorem 9.2.

Lemma 9.1. Let G be a general graph without loops and with maximum degree 4. If G4
is bipartite, then there is a matching in G that meets every vertex in G4.

Proof. Assume that G4 is bipartite. Let f(i) = g(i) = 1 for all vertex i ∈ G4 and g(i) = 0,
f(i) = 1 otherwise. Then, note that G has a fractional (g, f)-factor such that x(e) = 1/4

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 51

for all edges e ∈ V (G). Therefore, by Theorem 7.4 (Property I), there is a (g, f)-factor in
G. By construcution, this (g, f)-factor is a matching meeting every vertex in G4. �

Theorem 9.2. (Shannon, 1949 [10]) Let G be a general graph without loops. Then G has
an edge-colouring with at most b3

2
4 (G)c colours.

Proof. Let M1 be a maximal matching in G and 4 = 4(G). Consider the set of vertices
V ((G−M1)4) = {i ∈ V (G−M1) : degG−M1(i) = 4}. Let i, j ∈ V ((G−M1)4) and suppose
that there exists an edge e = (i, j) ∈ E(G). Since i, j ∈ V ((G −M1)4), i, j 6∈ M1, and so
the edge e = (i, j) can be added to the matching M1. This is a contradiction, since M1 is a
maximal matching. Therefore, there are no edges in G joining a pair of vertices from the set
V ((G −M1)4), and so V (G4) is an independent set of vertices in G. Hence, by definition
(G−M1)4 is bipartite. By Theorem 9.1, there exists a matching M2 in G−M1 such that
M2 meets every vertex of V ((G −M1)4). Note that M2 does not have to be a maximal
matching. Thus, if necessary, we add edges to M2 in order to transform it into a maximal
matching in G−M1.
Let L = G − (M1 + M2) with maximum degree at most 4− 1. We want to show that the
vertices of L with degree 4− 1 form a general bipartite graph L4−1. Recall that a general
graph is bipartite if and only if it has no odd cycles. By contradiction, assume that C is an
odd cycle in L4−1. Observe that no two consecutive vertices in C can belong to M2 because
G −M1 did not have two adjacent vertices with degree 4. So we can assume that C has
two consecutive vertices, i and j, which do not meet M2. Thus the edge e = (i, j) can be
added to the matching M2. This is a contradiction since M2 is maximal. Therefore, L4−1

does not have any odd cycles and so it is indeed a general bipartite graph. By Theorem 9.1,
there exists a matching M3 in L that meets every vertex in L4−1. Now, the general graph
G− (M1 +M2 +M3) has maximum degree 4− 2.
By repeating this process of removing matchings one by one, we decrease the maximum
degree of the general graph G by at least 2 for every 3 matchings removed. Induction now
completes the proof, except when we get down to maximum degree 1 for which only one
matching will be needed to remove all the edges (since there will be a matching Mn which
meets every vertex of H4−(4−1).

�

9.2. Graph decomposition. Another application of (g, f)-factors can be found in the
decomposition of a general graph G into k subgraphs. We say that a general graph can be
decomposed into k subgraphs F1, F2, ..., Fk if F1∪F2∪ ...∪Fk = G and F1∩F2∩ ...∩Fk = ∅.
Petersen proved that any general regular graph G of degree 2k can be decomposed into k
regular subgraphs of degree 2 [9]. This theorem is known as the 2-factorable Theorem. It
was then generalized by Anstee, who proved that a general graph in which all vertices have
degree congruent to 2k can be decomposed into k subgraphs of degree 1

k
[3]. A subgraph

of G is denoted 1
k
G if deg(1

k
G)(i) = 1

k
degG(v) for all v ∈ V (G). In his proof, Anstee uses

(g, f)-factors and Euler’s trails, which are trails going through every edge of a given general
graph exactly once.

52 ZOÉ HAMEL

Theorem 9.3. (Anstee, [3]) Let G be a general graph satisfying

degG(v) ≡ 0 (mod 2k) ∀v ∈ V (G). (29)

Then G has a subgraph, 1
k
G, satisfying

deg 1
k
G(v) =

1

k
degG(v) ∀v ∈ V (G). (30)

Thus G can be decomposed into k such 1
k

subgraphs.

Proof. Let G be a general graph satisfying equation (29). Then, each vertex in G has even
degree. Since every connected graph with vertices of even degree has an Euler trail, we can
find an Euler trail for each component of G. Now we give a direction to the edges of G as
they appear in each trail. G is then transformed into a directed graph D such that∑

v:(v,u)
∈A(G)

x(v′, u) =
∑
v:(u,v)
∈A(G)

x(u, v′′) =
1

2
degG(v)′ (31)

for all v ∈ V (G). Moreover, note that 1
2
degG(v) ≡ 0 (mod k). Form the general bipartite

graph GB = (V (G), E(G)) as follows. Let the two independent sets of vertices of V (GB) be
V ′ = {v′ : v ∈ V (G)} and V ′′ = {v′′ : v ∈ V (G)}. For each directed edge (u, v) in D, GB

has an edge (u′, v′′). Therefore, each edge in G correspond to exactly one edge in GB, and
every edge joins a vertex in V ′ to a vertex in V ′′. We then have the two following equalities:

degGB
(v′) =

∑
v:(u,v)
∈A(G)

x(u, v), degGB
(v′′) =

∑
v:(v,u)
∈A(G)

x(v, u). (32)

Let 1
2
degG(v) = nk and g(v) = f(v) = n for all v ∈ V (GB). Thus, GB a fractional (g, f)-

factor such that each edge of GB is a fractional edge 1
k
; that is g(v) = f(v) = 1

k
degGB

(v).
Since GB is bipartite and g ≡ f , by Theorem 7.4 (Property I), GB has a (g, f)-factor where
g(v) = f(v) = 1

k
degGB

(v) for all v ∈ V (GB). Now going back to our original general graph
G and regarding the edges of GB as edges of G, we have a subgraph F1 of G such that
degF1(v) = 1

k
degG(v) for all vertices v ∈ V (G).

Now, using induction, we prove that G can be decomposed into k such subgraphs. Let
l < k, where l ∈ N. Assume that there are l 1

k
G subgraphs of G, say F1, F2, ..., Fl. Let

H = G − (F1 + F2 + ... + Fl). By construction, degH(v) = degG(v) − l (1
k
) degG(v) ≡ 0

(mod 2(k − l)). Therefore, forming the general bipartite graph construction for H as we
did before for G, we can find a subgraph Fl+1 of H such that degFl+1

(v) = 1
k−l degH(v) for

all vertices v ∈ V (H). And since degH(v) = degG(v) − l (1
k
) degG(v), a little bit of algebra

proves that 1
k−l degH(v) = 1

k
degG(v). Therefore, we found another subgraph 1

k
G and there

are (l + 1) 1
k
G subgraphs of G.

By mathematical induction, there are k 1
k
G subgraphs. Observe that once we have found k

GRAPH DECOMPOSITION BASED ON DEGREE CONSTRAINTS 53

such subgraphs, we have used all the edges of the initial general graph G and therefore we
have found a decomposition of G into k 1

k
G. �

The more general theorem, Theorem 9.4, for which no condition is imposed on the degree
of the vertices of the general graph G, is also given by Anstee [3]. We omit the proof as it
uses (g, f)-factors and Euler trails as for Theorem 9.3 with a few additional twists.

Theorem 9.4. (Anstee, [3]) Let G be a general graph and k an integer. Then G has a 1
k
G

subgraph satisfying the following conditions:

deg 1
k
G(v) =

1

k
degG(v) if degG(v) ≡ 0 (mod 2k); (33)

deg 1
k
G(v) ∈ {1

k
degG(v),

1

k
degG(v) + 1} if degG(v) ≡ k (mod 2k); (34)

deg 1
k
G(v) ∈ {b1

k
degG(v)c, d1

k
degG(v) + 1e} if degG(v) 6≡ (mod k). (35)

54 ZOÉ HAMEL

References

[1] J. Akiyama, and M. Kano, Factors and Factorizations of Graphs, Springer, 2010.

[2] R.P.Anstee, An Algorithmic Proof of Tutte’s f -Factor Theorem, Journal of Algorithms 6 (1985),
112-131.

[3] R.P. Anstee, Dividing a Graph by Degrees, Journal of Graph Theory(1996), 377-384.

[4] R.P. Anstee, and J.R. Griggs, An application of matching theory of edge-colourings, Discrete Mathe-
matics 156.1 (1996), 253-256.

[5] R.P. Anstee, Simplified existence theorems for (g, f)-factors, Discrete applied mathematics 27.1 (1990),
29-38.

[6] C. Berge, Two theorems in graph theory, Proceedings of the National Academy of Sciences of the
United States of America 43.9 (1957), 842.

[7] L.R. Ford, and D.R. Fulkerson, Maximal flow through a network, Canadian Journal of Mathematics 8
(1956), 399.

[8] H.N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidirected network
flow problems, in “Proceedings of the fifteenth annual ACM symposium on Theory of computing”,
Boston, 1983.

[9] J. Petersen, Die Theorie des regulären Graphen, Acta Math. 15 (1861), 193-220.

[10] C.E. Shannon, A theorem on colouring the lines of a network, Journal of Mathematics and Physics
28.2 (1949), 148-151.

[11] W.T. Tutte, The factorization of linear graphs, Journal of the London Mathematical Society 1.2
(1947), 107-111.

[12] W.T. Tutte, The factors of graphs, Canadian Journal of Mathematics 4 (1952), 314-328.

