Forbidden Families of Configurations

Richard Anstee, UBC, Vancouver

Joint work with Christina Koch CanaDAM 2013
Memorial University, St. John's, Newfoundland June 13, 2013

Christina Koch

Consider the following family of subsets of $\{1,2,3,4\}$:

$$
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
$$

The incidence matrix A of the family \mathcal{A} of subsets of $\{1,2,3,4\}$ is:

$$
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
Definition We define $\|A\|$ to be the number of columns in A.

$$
\|A\|=6=|\mathcal{A}|
$$

Definition Given a matrix F, we say that A has F as a configuration (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \prec \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \prec \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definitions

$\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$
Avoid $(m, \mathcal{F})=\{A: A$-rowed simple, $F \nprec A$ for all $F \in \mathcal{F}\}$ forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$

Main Bounds

Definition Let K_{k} be the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.

Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.
Problem Given \mathcal{F}, can we predict the behaviour of forb (m, \mathcal{F}) ?

Balanced and Totally Balanced Matrices

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } \quad C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Balanced and Totally Balanced Matrices

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)$ are called Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$

Balanced and Totally Balanced Matrices

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)$ are called Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$
Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)$ are called Totally Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$

Remark If $\mathcal{F}^{\prime} \subset \mathcal{F}$ then $\operatorname{forb}(m, \mathcal{F}) \leq \operatorname{forb}\left(m, \mathcal{F}^{\prime}\right)$.
The inequality forb $\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right) \leq$ forb $\left(m, C_{3}\right)$ follows from the remark.
The equality follows from a result that any $m \times$ forb $\left(m, C_{3}\right)$ simple matrix in $\operatorname{Avoid}\left(m, C_{3}\right)$ is in fact totally balanced ($\mathrm{A}, 80$).
Thus we conclude $\operatorname{forb}\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=\operatorname{forb}\left(m, C_{3}\right)$.

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(\mathcal{F})$ denote the smallest p
such that for every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$, where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$, there is some $F \in \mathcal{F}$ with $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$.
Thus there is some $(p-1)$-fold product
$A_{1} \times A_{2} \times \cdots \times A_{p-1} \in \operatorname{Avoid}(m, \mathcal{F})$
showing that forb (m, \mathcal{F}) is $\Omega\left(m^{p-1}\right)$.

The Conjecture

Definition Let $x(\mathcal{F})$ denote the smallest p
such that for every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$, where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$, there is some $F \in \mathcal{F}$ with $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$.
Thus there is some $(p-1)$-fold product
$A_{1} \times A_{2} \times \cdots \times A_{p-1} \in \operatorname{Avoid}(m, \mathcal{F})$
showing that forb (m, \mathcal{F}) is $\Omega\left(m^{p-1}\right)$.
Conjecture (A, Sali 05) Let $|\mathcal{F}|=1$. Then forb (m, \mathcal{F}) is $\Theta\left(m^{x(\mathcal{F})-1}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions when $|\mathcal{F}|=1$.

The Conjecture

Definition Let $x(\mathcal{F})$ denote the smallest p
such that for every p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$, where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$,
there is some $F \in \mathcal{F}$ with $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$.
Thus there is some $(p-1)$-fold product
$A_{1} \times A_{2} \times \cdots \times A_{p-1} \in \operatorname{Avoid}(m, \mathcal{F})$
showing that forb (m, \mathcal{F}) is $\Omega\left(m^{p-1}\right)$.
Conjecture (A, Sali 05) Let $|\mathcal{F}|=1$. Then forb (m, \mathcal{F}) is $\Theta\left(m^{x(\mathcal{F})-1}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions when $|\mathcal{F}|=1$.
The conjecture has been verified for $k \times \ell \quad F$ where $k=2$ (A, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $\ell=2$ (A, Keevash 06).

Forbidden Families can fail Conjecture

Definition ex (m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.
$A \in \operatorname{Avoid}\left(m, \mathbf{1}_{3}\right)$ will be a matrix with up to $m+1$ columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.
Let $\operatorname{Inc}(H)$ denote the $|V(H)| \times|E(H)|$ vertex-edge incidence matrix associated with H.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, \operatorname{lnc}(H)\right\}\right)=m+1+\operatorname{ex}(m, H)$.

Forbidden Families can fail Conjecture

Definition ex (m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.
$A \in \operatorname{Avoid}\left(m, \mathbf{1}_{3}\right)$ will be a matrix with up to $m+1$ columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.
Let $\operatorname{Inc}(H)$ denote the $|V(H)| \times|E(H)|$ vertex-edge incidence matrix associated with H.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, \operatorname{lnc}(H)\right\}\right)=m+1+\operatorname{ex}(m, H)$.
In this talk $I\left(C_{4}\right)=C_{4}, I\left(C_{6}\right)=C_{6}$.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, C_{4}\right\}\right)=m+1+\operatorname{ex}\left(m, C_{4}\right)$ which is $\Theta\left(m^{3 / 2}\right) . \quad$ note that $\times\left(\left\{\mathbf{1}_{3}, C_{4}\right\}\right)=2$
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, C_{6}\right\}\right)=m+1+\operatorname{ex}\left(m, C_{6}\right)$ which is $\Theta\left(m^{4 / 3}\right) . \quad$ note that $x\left(\left\{\mathbf{1}_{3}, C_{6}\right\}\right)=2$

Forbidden Families can pass Conjecture

Theorem forb $\left(m,\left\{\mathbf{1}_{3}, \operatorname{lnc}(H)\right\}\right)=m+1+\operatorname{ex}(m, H)$.
Theorem Let T be a graph with no cycles. Then ex (m, T) is $O(m)$.
Corollary Let F be a (0,1)-matrix with column sums at most 2 . Assume $C_{k} \nprec F$ for $k=2,3, \ldots$ (we don't allow repeated columns of sum 2 but allow other repeated columns). Then forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $O(m)$.

Proof: We can find a graph T with no cycles such that $F \prec \operatorname{lnc}(T)$. Then forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right) \leq m+1+\operatorname{ex}(m, T)$.

Forbidden Families can pass Conjecture

Theorem (Balogh and Bollobás 05) Let k be given. Then there is a constant c_{k} so that forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.

We note that $x\left(\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=1$ and so there is no obvious product construction.

Note that $c_{k} \geq\binom{ 2 k-2}{k-1}$ by taking all columns of column sum at most $k-1$ that arise from the $k-1$-fold product $T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$.

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$.
Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_{i} \in \mathcal{G}$, there is some $F_{j} \in \mathcal{F}$ with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq$ forb (m, \mathcal{G}).

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$.
Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_{i} \in \mathcal{G}$, there is some $F_{j} \in \mathcal{F}$ with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq$ forb (m, \mathcal{G}).
Theorem Let \mathcal{F} be given. Then either forb (m, \mathcal{F}) is $O(1)$ or forb (m, \mathcal{F}) is $\Omega(m)$.

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$.
Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_{i} \in \mathcal{G}$, there is some $F_{j} \in \mathcal{F}$ with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq$ forb (m, \mathcal{G}).
Theorem Let \mathcal{F} be given. Then either forb (m, \mathcal{F}) is $O(1)$ or forb (m, \mathcal{F}) is $\Omega(m)$.
Proof: We start using $\mathcal{G}=\left\{I_{p}, I_{p}^{c}, T_{p}\right\}$ with p suitably large.

Either

we have the property that there is some $F_{r} \prec I_{p}$, and some $F_{s} \prec I_{p}^{c}$ and some $F_{t} \prec T_{p}$ in which case forb $(m, \mathcal{F}) \leq$ forb $\left(m,\left\{I_{p}, I_{p}^{c}, T_{p}\right\}\right)$ which is $O(1)$
or
without loss of generality we have $F_{j} \nprec I_{p}$ for all j and hence $I_{m} \in \operatorname{Avoid}(m, \mathcal{F})$ and so forb (m, \mathcal{F}) is $\Omega(m)$.

A pair of Configurations with quadratic bounds

$$
\left.\begin{array}{l}
\text { e.g. } F_{2}(1,2,2,1)=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \nprec I \times I^{c} . \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
I_{3}^{c} & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]}
\end{array}\right] .
$$

A pair of Configurations with quadratic bounds

e.g. $\left.F_{2}(1,2,2,1)=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right] \nprec \right\rvert\, \times I^{c}$.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \times\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]=\left[\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0\end{array}\right]$
$I_{m / 2} \times I_{m / 2}^{c}$ is an $m \times m^{2} / 4$ simple matrix avoiding $F_{2}(1,2,2,1)$, so forb $\left(m, F_{2}(1,2,2,1)\right)$ is $\Omega\left(m^{2}\right)$.
(A, Ferguson, Sali 01 forb $\left.\left(m, F_{2}(1,2,2,1)\right)=\left\lfloor\frac{m^{2}}{4}\right\rfloor+\binom{m}{1}+\binom{m}{0}\right)$

A pair of Configurations with quadratic bounds

$$
\begin{aligned}
& \text { e.g. } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \nprec T \times T \text {. Also } I_{3} \nprec I^{c} \times T, I_{3} \nprec I^{c} \times I^{c} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

A pair of Configurations with quadratic bounds

$$
\text { e.g. } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \nprec T \times T \text {. Also } I_{3} \nprec I^{c} \times T, I_{3} \nprec I^{c} \times I^{c}
$$

$T_{m / 2} \times T_{m / 2}$ is an $m \times m^{2} / 4$ simple matrix avoiding l_{3}, so forb $\left(m, l_{3}\right)$ is $\Omega\left(m^{2}\right)$.
$\left(\right.$ forb $\left.\left(m, l_{3}\right)=\binom{m}{2}+\binom{m}{1}+\binom{m}{0}\right)$

Forbidden Families can pass Conjecture

By considering the construction $I \times I^{c}$ that avoids $F_{2}(1,2,2,1)$ and the constructions $I^{c} \times I^{c}$ or $I^{c} \times T$ or $T \times T$ that avoids I_{3}, we note $x\left(\left\{I_{3}, F_{2}(1,2,2,1)\right\}\right)=2$ so that we have only linear obvious constructions (I_{m}^{c} or T_{m}) that avoid both $F_{2}(1,2,2,1)$ and l_{3}. We are led to the following:
Theorem forb $\left(m,\left\{l_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.

Forbidden Families can pass Conjecture

By considering the construction $I \times I^{c}$ that avoids $F_{2}(1,2,2,1)$ and the constructions $I^{c} \times I^{c}$ or $I^{c} \times T$ or $T \times T$ that avoids I_{3}, we note $x\left(\left\{l_{3}, F_{2}(1,2,2,1)\right\}\right)=2$ so that we have only linear obvious constructions (I_{m}^{c} or T_{m}) that avoid both $F_{2}(1,2,2,1)$ and l_{3}. We are led to the following:
Theorem forb $\left(m,\left\{l_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.
We can extend the argument quite far:
Theorem forb $\left(m,\left\{t \cdot I_{k}, F_{2}(1, t, t, 1)\right\}\right)$ is $\Theta(m)$.

Another example:

$$
\text { forb }\left(m,\left\{\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & \overbrace{11 \cdots 1}^{t} & \overbrace{00 \cdots 0}^{t} & 1 \\
0 & 00 \cdots 0 & 11 \cdots 1 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 00 \cdots 0 & 11 \cdots 1 & 1
\end{array}\right]\right\}\right) \text { is } O(m) \text {. }
$$

Another example:

$$
\text { forb }\left(m,\left\{\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{cccc}
0 & \overbrace{11 \cdots 1} & \overbrace{00 \cdots 0}^{t} & 1 \\
0 & 00 \cdots 0 & 11 \cdots 1 & 1 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 00 \cdots 0 & 11 \cdots 1 & 1
\end{array}\right]\right\}\right) \text { is } O(m) \text {. }
$$

We studied the 9 'minimal' configurations that have quadratic bounds and were able to verify the predictions of the conjecture for all subsets of these 9 .

An unusual Bound

Theorem (A,Koch,Raggi,Sali 12) forb $\left(m,\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.

$$
T_{2} \times T_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad\left(=C_{4}\right)
$$

We showed initially that forb $\left(m,\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$ but Christina Koch realized that we ought to be able to drop $T_{2} \times I_{2}$ and we were able to redo the proof (which simplified slightly!).

Miguel Raggi, Attila Sali

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right] .
$$

To show $\|A\|$ is $O\left(m^{3 / 2}\right)$ it would suffice to show $\left\|C_{r}\right\|$ is $O\left(m^{1 / 2}\right)$ for some choice of r. Our proof shows that assuming $\left\|C_{r}\right\|>20 m^{1 / 2}$ for all choices r results in a contradiction. In particular, associated with C_{r} is a set of rows $S(r)$ with $S(r) \geq 5 m^{1 / 2}$. We let $S(r)=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$. After some work we show that $\left|S\left(r_{i}\right) \cap S\left(r_{j}\right)\right| \leq 5$. Then we have $\left|S\left(r_{1}\right) \cup S\left(r_{2}\right) \cup S\left(r_{3}\right) \cup \cdots\right|$
$=\left|S\left(r_{1}\right)\right|+\left|S\left(r_{2}\right) \backslash S\left(r_{1}\right)\right|+\left|S\left(r_{3}\right) \backslash\left(S\left(r_{1}\right) \cup S\left(r_{2}\right)\right)\right|+\cdots$
$=5 m^{1 / 2}+\left(5 m^{1 / 2}-5\right)+\left(5 m^{1 / 2}-10\right)+\cdots>m!!!$

Thanks to all the organizers of CanaDAM 2013! Great to visit Newfoundland.
I very much enjoyed the Fish and Brew(i)s.

