Forbidden Families of Configurations

Richard Anstee, UBC, Vancouver

Joint work with Christina Koch CanaDAM 2013 Memorial University, St. John's, Newfoundland June 13, 2013

∃ >

Christina Koch

・ロ・・(四・・)を注・・(注・・)注

Consider the following family of subsets of $\{1, 2, 3, 4\}$: $\mathcal{A} = \{\emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\}\}$ The incidence matrix A of the family \mathcal{A} of subsets of $\{1, 2, 3, 4\}$ is:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

Definition We define ||A|| to be the number of columns in *A*. ||A|| = 6 = |A|

- 4 周 と 4 き と 4 き と … き

Definition Given a matrix F, we say that A has F as a *configuration* (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \prec \quad A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

-

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Definition Given a matrix F, we say that A has F as a *configuration* (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad \prec \quad A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

-

(4)同() (4) ほう (4) ほう (5) ほう

Definitions

 $\mathcal{F} = \{F_1, F_2, \dots, F_t\}$ Avoid $(m, \mathcal{F}) = \{A : A \text{ m-rowed simple, } F \not\prec A \text{ for all } F \in \mathcal{F}\}$ forb $(m, \mathcal{F}) = \max_A \{ ||A|| : A \in \text{Avoid}(m, \mathcal{F}) \}$ **Definition** Let K_k be the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Theorem (Füredi 83). Let *F* be a $k \times \ell$ matrix. Then forb $(m, F) = O(m^k)$. **Problem** Given \mathcal{F} , can we predict the behaviour of forb (m, \mathcal{F}) ?

・ 同 ト ・ ヨ ト ・ ヨ ト

Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

e.g.
$$C_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, C_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

• E •

Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

e.g.
$$C_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, C_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Matrices in Avoid $(m, \{C_3, C_5, C_7, ...\})$ are called Balanced Matrices. **Theorem** forb $(m, \{C_3, C_5, C_7, ...\}) = forb(m, C_3)$

伺い イヨト イヨト ニヨ

Balanced and Totally Balanced Matrices

Let C_k denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

e.g.
$$C_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, C_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Matrices in Avoid $(m, \{C_3, C_5, C_7, ...\})$ are called Balanced Matrices. **Theorem** $forb(m, \{C_3, C_5, C_7, ...\}) = forb(m, C_3)$ Matrices in Avoid $(m, \{C_3, C_4, C_5, C_6, ...\})$ are called Totally Balanced Matrices. **Theorem** $forb(m, \{C_3, C_4, C_5, C_6, ...\}) = forb(m, C_3)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Remark If $\mathcal{F}' \subset \mathcal{F}$ then $\textit{forb}(m, \mathcal{F}) \leq \textit{forb}(m, \mathcal{F}')$.

The inequality $forb(m, \{C_3, C_4, C_5, C_6, ...\}) \leq forb(m, C_3)$ follows from the remark.

The equality follows from a result that any $m \times forb(m, C_3)$ simple matrix in Avoid (m, C_3) is in fact totally balanced (A, 80). Thus we conclude $forb(m, \{C_3, C_4, C_5, C_6, \ldots\}) = forb(m, C_3)$.

・吊り イヨト イヨト ニヨ

The building blocks of our product constructions are I, I^c and T:

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I_4^c = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

白 ト く ヨ ト く ヨ ト

Definition Given an $m_1 \times n_1$ matrix A and a $m_2 \times n_2$ matrix B we define the product $A \times B$ as the $(m_1 + m_2) \times (n_1 n_2)$ matrix consisting of all $n_1 n_2$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m^p/p^p)$ i.e. $\Theta(m^p)$ columns.

(4月) (4日) (4日) 日

Definition Given an $m_1 \times n_1$ matrix A and a $m_2 \times n_2$ matrix B we define the product $A \times B$ as the $(m_1 + m_2) \times (n_1 n_2)$ matrix consisting of all $n_1 n_2$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m^p/p^p)$ i.e. $\Theta(m^p)$ columns.

(4月) (4日) (4日) 日

The Conjecture

Definition Let $x(\mathcal{F})$ denote the smallest psuch that for every p-fold product $A_1 \times A_2 \times \cdots \times A_p$, where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$, there is some $F \in \mathcal{F}$ with $F \prec A_1 \times A_2 \times \cdots \times A_p$. Thus there is some (p-1)-fold product $A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m, \mathcal{F})$ showing that $forb(m, \mathcal{F})$ is $\Omega(m^{p-1})$.

The Conjecture

Definition Let $\times(\mathcal{F})$ denote the smallest psuch that for every p-fold product $A_1 \times A_2 \times \cdots \times A_p$, where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$, there is some $F \in \mathcal{F}$ with $F \prec A_1 \times A_2 \times \cdots \times A_p$. Thus there is some (p-1)-fold product $A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m, \mathcal{F})$ showing that $forb(m, \mathcal{F})$ is $\Omega(m^{p-1})$.

Conjecture (A, Sali 05) Let $|\mathcal{F}| = 1$. Then forb (m, \mathcal{F}) is $\Theta(m^{\times(\mathcal{F})-1})$.

In other words, we predict our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions when $|\mathcal{F}| = 1$.

・日・ ・ ヨ・ ・ ヨ・

The Conjecture

Definition Let $\times(\mathcal{F})$ denote the smallest psuch that for every p-fold product $A_1 \times A_2 \times \cdots \times A_p$, where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$, there is some $F \in \mathcal{F}$ with $F \prec A_1 \times A_2 \times \cdots \times A_p$. Thus there is some (p-1)-fold product $A_1 \times A_2 \times \cdots \times A_{p-1} \in \text{Avoid}(m, \mathcal{F})$ showing that $forb(m, \mathcal{F})$ is $\Omega(m^{p-1})$.

Conjecture (A, Sali 05) Let $|\mathcal{F}| = 1$. Then forb (m, \mathcal{F}) is $\Theta(m^{\times(\mathcal{F})-1})$.

In other words, we predict our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions when $|\mathcal{F}| = 1$.

The conjecture has been verified for $k \times \ell$ *F* where k = 2 (A, Griggs, Sali 97) and k = 3 (A, Sali 05) and $\ell = 2$ (A, Keevash 06).

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition ex(m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.

 $A \in Avoid(m, \mathbf{1}_3)$ will be a matrix with up to m + 1 columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.

Let Inc(H) denote the $|V(H)| \times |E(H)|$ vertex-edge incidence matrix associated with H.

Theorem *forb*(m, {**1**₃, lnc(H)}) = m + 1 + ex(m, H).

伺 と く き と く き と

Definition ex(m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.

 $A \in Avoid(m, \mathbf{1}_3)$ will be a matrix with up to m + 1 columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.

Let Inc(H) denote the $|V(H)| \times |E(H)|$ vertex-edge incidence matrix associated with H.

Theorem *forb*(m, {**1**₃, lnc(H)}) = m + 1 + ex(m, H).

In this talk $I(C_4) = C_4$, $I(C_6) = C_6$.

Theorem forb $(m, \{\mathbf{1}_3, C_4\}) = m + 1 + ex(m, C_4)$ which is $\Theta(m^{3/2})$. note that $x(\{\mathbf{1}_3, C_4\}) = 2$

Theorem forb $(m, \{\mathbf{1}_3, C_6\}) = m + 1 + ex(m, C_6)$ which is $\Theta(m^{4/3})$. note that $x(\{\mathbf{1}_3, C_6\}) = 2$

(日本) (日本) (日本)

Theorem *forb*(m, {**1**₃, lnc(H)}) = m + 1 + ex(m, H).

Theorem Let T be a graph with no cycles. Then ex(m, T) is O(m).

Corollary Let F be a (0,1)-matrix with column sums at most 2. Assume $C_k \not\prec F$ for k = 2, 3, ... (we don't allow repeated columns of sum 2 but allow other repeated columns). Then forb $(m, \{\mathbf{1}_3, F\})$ is O(m).

Proof: We can find a graph T with no cycles such that $F \prec \operatorname{Inc}(T)$. Then $\operatorname{forb}(m, \{\mathbf{1}_3, F\}) \leq m + 1 + \operatorname{ex}(m, T)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Balogh and Bollobás 05) Let k be given. Then there is a constant c_k so that $forb(m, \{I_k, I_k^c, T_k\}) = c_k$.

We note that $x({I_k, I_k^c, T_k}) = 1$ and so there is no obvious product construction.

Note that $c_k \ge \binom{2k-2}{k-1}$ by taking all columns of column sum at most k-1 that arise from the k-1-fold product $T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$.

- 本部 とくき とくき とうき

Let $\mathcal{F} = \{F_1, F_2, \dots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \dots, G_\ell\}$. Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $forb(m, \mathcal{F}) \leq forb(m, \mathcal{G})$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Let $\mathcal{F} = \{F_1, F_2, \dots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \dots, G_\ell\}$. Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $forb(m, \mathcal{F}) \leq forb(m, \mathcal{G})$. Theorem Let \mathcal{F} be given. Then either $forb(m, \mathcal{F})$ is O(1)

or $forb(m, \mathcal{F})$ is $\Omega(m)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Let $\mathcal{F} = \{F_1, F_2, \dots, F_k\}$ and $\mathcal{G} = \{G_1, G_2, \dots, G_\ell\}$. Lemma Let \mathcal{F} and \mathcal{G} have the property that for every $G_i \in \mathcal{G}$, there is some $F_j \in \mathcal{F}$ with $F_j \prec G_i$. Then $forb(m, \mathcal{F}) \leq forb(m, \mathcal{G})$.

Theorem Let \mathcal{F} be given. Then either $forb(m, \mathcal{F})$ is O(1) or $forb(m, \mathcal{F})$ is $\Omega(m)$.

Proof: We start using $\mathcal{G} = \{I_p, I_p^c, T_p\}$ with *p* suitably large. Either

we have the property that there is some $F_r \prec I_p$, and some $F_s \prec I_p^c$ and some $F_t \prec T_p$ in which case $forb(m, \mathcal{F}) \leq forb(m, \{I_p, I_p^c, T_p\})$ which is O(1)

or

without loss of generality we have $F_j \not\prec I_p$ for all j and hence $I_m \in Avoid(m, \mathcal{F})$ and so $forb(m, \mathcal{F})$ is $\Omega(m)$.

(ロ) (同) (E) (E) (E)

A pair of Configurations with quadratic bounds

e.g.
$$F_2(1,2,2,1) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \not\prec I \times I^c.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

(日) (日) (日)

3

e.g.
$$F_2(1,2,2,1) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \neq I \times I^c.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$
 $I_{m/2} \times I^c_{m/2}$ is an $m \times m^2/4$ simple matrix avoiding $F_2(1,2,2,1)$, so forb $(m, F_2(1,2,2,1))$ is $\Omega(m^2)$.

(A, Ferguson, Sali 01 *forb*($m, F_2(1, 2, 2, 1)$) = $\lfloor \frac{m^2}{4} \rfloor + \binom{m}{1} + \binom{m}{0}$)

回 と く ヨ と く ヨ と

A pair of Configurations with quadratic bounds

□ > < ∃ >

æ

A pair of Configurations with quadratic bounds

e.g. $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \not\prec T \times T$. Also $I_3 \not\prec I^c \times T$, $I_3 \not\prec I^c \times I^c$ $T_{m/2} \times T_{m/2}$ is an $m \times m^2/4$ simple matrix avoiding I_3 , so forb (m, l_3) is $\Omega(m^2)$. $(forb(m, I_3) = \binom{m}{2} + \binom{m}{1} + \binom{m}{2})$

向下 イヨト イヨト

By considering the construction $I \times I^c$ that avoids $F_2(1, 2, 2, 1)$ and the constructions $I^c \times I^c$ or $I^c \times T$ or $T \times T$ that avoids I_3 , we note $x(\{I_3, F_2(1, 2, 2, 1)\}) = 2$ so that we have only linear obvious constructions $(I_m^c \text{ or } T_m)$ that avoid both $F_2(1, 2, 2, 1)$ and I_3 . We are led to the following: **Theorem** forb $(m, \{I_3, F_2(1, 2, 2, 1)\})$ is $\Theta(m)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

By considering the construction $I \times I^c$ that avoids $F_2(1, 2, 2, 1)$ and the constructions $I^c \times I^c$ or $I^c \times T$ or $T \times T$ that avoids I_3 , we note $x(\{I_3, F_2(1, 2, 2, 1)\}) = 2$ so that we have only linear obvious constructions $(I_m^c \text{ or } T_m)$ that avoid both $F_2(1, 2, 2, 1)$ and I_3 . We are led to the following: **Theorem** $forb(m, \{I_3, F_2(1, 2, 2, 1)\})$ is $\Theta(m)$.

We can extend the argument quite far: **Theorem** forb(m, { $t \cdot I_k$, $F_2(1, t, t, 1)$ }) is $\Theta(m)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Another example:

$$forb(m, \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \\ \vdots &$$

<ロ> (四) (四) (三) (三) (三)

Another example:

$$forb(m, \left\{ \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 11 \\ \end{bmatrix} \right\}) \text{ is } O(m).$$

We studied the 9 'minimal' configurations that have quadratic bounds and were able to verify the predictions of the conjecture for all subsets of these 9.

- 17

< ∃ >

Theorem (A,Koch,Raggi,Sali 12) *forb*(m, { $T_2 \times T_2$, $I_2 \times I_2$ }) *is* $\Theta(m^{3/2})$.

$$T_2 \times T_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \ I_2 \times I_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \ (= C_4)$$

We showed initially that $forb(m, \{T_2 \times T_2, T_2 \times I_2, I_2 \times I_2\})$ is $\Theta(m^{3/2})$ but Christina Koch realized that we ought to be able to drop $T_2 \times I_2$ and we were able to redo the proof (which simplified slightly!).

・ 同 ト ・ ヨ ト ・ ヨ ト

Miguel Raggi, Attila Sali

<ロ> (四) (四) (三) (三) (三) (三)

Induction

Let A be an $m \times forb(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & C_r & C_r & D_r \end{array} \right].$$

∢ 문 ▶ - 문

Induction

Let A be an $m \times forb(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r \\ B_r \\ C_r \\ C_r \\ C_r \\ C_r \\ C_r \end{array} \right].$$

To show ||A|| is $O(m^{3/2})$ it would suffice to show $||C_r||$ is $O(m^{1/2})$ for some choice of r. Our proof shows that assuming $||C_r|| > 20m^{1/2}$ for all choices r results in a contradiction. In particular, associated with C_r is a set of rows S(r) with $S(r) \ge 5m^{1/2}$. We let $S(r) = \{r_1, r_2, r_3, \ldots\}$. After some work we show that $|S(r_i) \cap S(r_j)| \le 5$. Then we have $|S(r_1) \cup S(r_2) \cup S(r_3) \cup \cdots|$ $= |S(r_1)| + |S(r_2) \setminus S(r_1)| + |S(r_3) \setminus (S(r_1) \cup S(r_2))| + \cdots$ $= 5m^{1/2} + (5m^{1/2} - 5) + (5m^{1/2} - 10) + \cdots > m!!!$

伺い イヨン イヨン

3

Thanks to all the organizers of CanaDAM 2013! Great to visit Newfoundland. I very much enjoyed the Fish and Brew(i)s.

同 と く ヨ と く ヨ と …

æ