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Induction

We are often asked to prove results which are of the form “H(n) is true for all n ≥ 1”, where
H(n) is some statement that refers to n.

To establish “H(n) is true for all n ≥ 1”, we apparently have an infinite amount of work. There
are an infinite number of choices for n. So we use facts about integers to reduce the workload. Think
of an infinite ladder with the steps on the ladder labelled step 1, step 2, step 3,· · · . We imagine
reaching step n is the same as having proved H(n). Now imagine we can establish the following
facts

H(1) is true Base Case
H(k) =⇒ H(k + 1) for all k ≥ 1 Inductive Step

In ladder terms this becomes

we can reach step 1 Base Case
if we can reach the kth step then we can reach the (k + 1)st step Inductive Step

It should be reasonable that if these two hypotheses are true then we can reach any step of the
ladder. Thus H(n) is true for all n.

There are many variations in how induction is applied. One possibility is that you don’t start
ot the first step 1 but at some later step, say step 3. Now if we can reach step 3 and, for all k ≥ 3,
if we can reach the kth step then we can reach the (k + 1)st step then we can reach any step n in
the ladder for n ≥ 3.

Another variation that is widely used is to replace H(n) by H ′(n) where H ′(n) is the statement
that H(k) is true for all k with 1 ≤ k ≤ n. The statement H ′(1) is true is just the statement H(1)
is true. The statement H ′(k) =⇒ H ′(k + 1) is equivalent to showing that H(1), H(2), . . . ,H(k)
are true imples H(k + 1) is true. And the conclusion that H ′(n) is true for all n ≥ 1 is eqiuivalent
to H(n) is true for all n. While this is just induction with an altered induction hypothesis it is
sometimes called strong induction.

For example:
We are familiar with the fibonaci numbers

f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5, f(6) = 8, f(7) = 13, . . . which are generated by a
recurrence f(n) = f(n− 1) + f(n− 2) starting with the base case that f(1) = f(2) = 1. We would
like to say that they grow exponentially. A possible choice for H(n) is the statement that there
exists a constant c, independent of n, so that

H(n) : The nth fibonacci number is greater that c · (1.5)n

The growth rate (1.5)n is just a guess. We have the recuurence for fibonacci numbers that

f(n) = f(n− 1) + f(n− 2)

and so we would like to use properties of both f(n − 1) and f(n − 2) to determine properties of
f(n). We will need to prove H(n− 1), H(n− 2) =⇒ H(n), a form of strong induction. As well we
must establish the base case H(1) and H(2).



Problems

Eden Sequences

Adapted from 2012 Euclid Contest, problem 10. An Eden sequence chosen from {1, 2, . . . , N} is a
sequence a1, a2, . . . of integers from {1, 2, . . . , N} with the properties that the sequence is increasing
and the terms in the sequence in even position are even and the terms in odd position are odd. One
can verify that the following are the four Eden sequences chosen from {1, 2, 3}:

1 1, 2 3 1, 2, 3

Let e(N) denote the number of Eden sequences from {1, 2, . . . , N}. Determine a recurrence for
e(N) in terms of e(k) for some k < N . The original problem asked you to compute e(18) and e(19)
given that e(17) = 4180 and e(20) = 17710.

Hint: You may find it easier to consider f(k) to be the number of Eden sequences whose largest
term is k.

Extra credit: Why was the name Eden sequence chosen?

Towers of Hanoi

Consider the following wooden puzzle consisting of n disks with the ith disk having radius i.
Imagine you have a board with three pegs and the disks have holes at their centres so that they can
be placed on the pegs. A legal placement of the disks has no larger disk lying on top of a smaller
disk. A move is moving one disk on the top of a peg to the top of another peg. All the disks are
initially places on one peg, from largest to smallest. How many moves are required to move all the
disks to another peg?

Recurrences from Computer Science

Imagine we have a function f that when evaluated at n yields f(n) is the runtime of the algorithm
on a problem of size n. Now assume f(1) = 1 and for n ≥ 2,
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Verify that for some constant c that f(n) ≤ cn for all n ≥ 1.

Convex n-gons

An n-gon is convex if the interior angle at any corner is at most π. Or if we go around the
n-gon counterclockwise we will always be turning to the left. Consider a convex n-gon with n
vertices/corners. Show that the sum of the interior angles is (n−2)π or in degrees 180(n−2). Does
this generailize? Hint: Try n = 3.

Lines

Consider n lines in the plane. Consider the regions formed in the plane by the lines. You can
think of this as cutting the plane along each line and the regions are the connected pieces. Some
regions will be infinite. Show that you can colour each region either black or white so that no two
regions bordering each other, on a non-zero length of one of the lines, have the same colour.



Proof: For the base case we need to establish H(1), H(2). Since we need f(1) = 1 ≤ c(1.5) and
f(2) = 1 ≤ c(1.5)2, we can take c = 4/9 and then H(1), H(2) are true.

For the inductive step we need to show that H(k− 1), H(k) =⇒ H(k+ 1) for k ≥ 3. We check

f(k + 1) = f(k) + f(k − 1) ≥ c(1.5)k + c(1.5)k−1 = c(1.5)k+1

(
1

1.5
+

1
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)
We verify that 1

1.5 + 1
(1.5)2

= 2
3 + 4

9 = 10
9 > 1 and so we deduce that f(k+ 1) ≥ c(1.5)k+1 establishing

H(k + 1). By induction, H(n) is true for all n ≥ 1.

Can we choose a larger number that 1.5 that still works? (We may need a smaller c). In fact

the largest number that still works is the golden ratio τ = 1+
√
5

2 so that for a suitable c, f(n) ≥ cτn.
You can then go on to establish that there exists a constant c′ so that f(n) ≤ c′τn.


