# Forbidden Submatrices 

Ronnie Chen<br>UBC, Vancouver

Discrete Mathematics Seminar, November 8, 2011

## Acknowledgements

This represents joint work with Richard Anstee and Attila Sali

## The problem

## Definition

A $(0,1)$-matrix is simple if it has no repeated columns.

## The problem

## Definition

A $(0,1)$-matrix is simple if it has no repeated columns.

- Given a $k \times \ell(0,1)$-matrix $F$


## The problem

## Definition

A $(0,1)$-matrix is simple if it has no repeated columns.

- Given a $k \times \ell(0,1)$-matrix $F$
- Let Avoids $(m, F)$ denote the set of all simple $m$-row matrices $A$ with no submatrix $F$ (note: row/column order matters)
- Let $\|A\|$ denote the number of columns of $A$
- We wish to bound $\|A\|$ in terms of $m$, for $A \in \operatorname{Avoids}(m, F)$


## The problem

## Definition

A $(0,1)$-matrix is simple if it has no repeated columns.

- Given a $k \times \ell(0,1)$-matrix $F$
- Let $\operatorname{Avoids}(m, F)$ denote the set of all simple $m$-row matrices $A$ with no submatrix $F$ (note: row/column order matters)
- Let $\|A\|$ denote the number of columns of $A$
- We wish to bound $\|A\|$ in terms of $m$, for $A \in \operatorname{Avoids}(m, F)$


## Definition

Let $F$ be a $k \times \ell(0,1)$-matrix and $m \in \mathbb{N}$. Define

$$
\mathrm{fs}(m, F)=\max \{\|A\|: A \in \operatorname{Avoids}(m, F)\}
$$

## The conjecture

Conjecture (Anstee, Frankl, Füredi, Pach 1986)
Let $F$ be a $k \times \ell(0,1)$-matrix. Then

$$
\mathrm{fs}(m, F) \in O\left(m^{k}\right)
$$

That is, there exists a constant $c_{F}$ such that $\mathrm{fs}(m, F) \leq c_{F} m^{k}$.

## Known results

Theorem (Anstee, Füredi 1986)
Let $F$ be a $k \times 1(0,1)$-column. Then

$$
\mathrm{fs}(m, F) \in \Theta\left(m^{k-1}\right)
$$

## Known results

Theorem (Anstee, Füredi 1986)
Let $F$ be a $k \times 1(0,1)$-column. Then

$$
\mathrm{fs}(m, F) \in \Theta\left(m^{k-1}\right) .
$$

Theorem (Anstee 2000)
Let $F$ be a $k \times \ell(0,1)$-matrix. Then with $\varepsilon=(k-1) /\left(13 \log _{2} \ell\right)$,

$$
\mathrm{fs}(m, F) \in O\left(m^{2 k-1-\varepsilon}\right) .
$$

## Known results

Theorem (Anstee, Füredi 1986)
Let $F$ be a $k \times 1(0,1)$-column. Then

$$
\mathrm{fs}(m, F) \in \Theta\left(m^{k-1}\right) .
$$

Theorem (Anstee 2000)
Let $F$ be a $k \times \ell(0,1)$-matrix. Then with $\varepsilon=(k-1) /\left(13 \log _{2} \ell\right)$,

$$
\mathrm{fs}(m, F) \in O\left(m^{2 k-1-\varepsilon}\right) .
$$

Theorem (Anstee, Füredi 1986)
Let $F$ be a $1 \times \ell(0,1)$-row. Then

$$
\mathrm{fs}(m, F) \in O(m)
$$

## New results

Theorem
Let $F$ be a $k \times \ell(0,1)$-matrix with $\ell \geq 2$ and not all columns identical. Then

$$
\mathrm{fs}(m, F) \in \Omega\left(m^{k}\right) .
$$

## New results

## Theorem

Let $F$ be a $k \times \ell(0,1)$-matrix with $\ell \geq 2$ and not all columns identical.
Then

$$
\mathrm{fs}(m, F) \in \Omega\left(m^{k}\right) .
$$

Theorem
Let $F$ be one of the following two $2 \times \ell(0,1)$-matrices:

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \text { or }\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
1 & 0 & 1 & 0 & \cdots
\end{array}\right] \text {. }
$$

Then

$$
\mathrm{fs}(m, F) \in O\left(m^{2}\right) .
$$

## The algorithm

- Scan the matrix $A$ from left to right


## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows


## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{1} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

1
2

$2\left[\begin{array}{l}1 \\ 0\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{1} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

1
2

$2\left[\begin{array}{l}1 \\ 0\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{1} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

1
2

$\mathbf{2} \mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{1} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

1
2
$\mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$
$\mathbf{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{1} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

$2\left[\begin{array}{l}1 \\ 0\end{array}\right.$
$\mathbf{3}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\mathbf{2} \mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& \mathbf{2} \\
& \mathbf{2} \\
& \mathbf{3}
\end{aligned} \quad F=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

1 $\left[\begin{array}{l}1 \\ 0\end{array}\right.$
$\mathbf{3}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$\mathbf{2} \mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$

## The algorithm

- Scan the matrix $A$ from left to right
- Greedily build up a copy of $F$ on each subset of $k$ rows
- Count total \# of contributions to each copy of $F$


## Example

$$
\left.\begin{array}{ll}
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] & \mathbf{1} \\
\mathbf{2} & \\
\mathbf{3} \\
\mathbf{1}\left[\begin{array}{llll}
1 & \mathbf{1} \\
0 & & & 1
\end{array} 0 \begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right. & 0
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

- If $A$ has no submatrix $F$, then $\#$ contributions $\leq(\ell-1)\binom{m}{k} \in O\left(m^{k}\right)$ (pigeonhole)

Theorem (Anstee 2000)
Let $F$ be the $1 \times \ell(0,1)$-row

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \ldots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1) m .
$$

Theorem (Anstee 2000)
Let $F$ be the $1 \times \ell(0,1)$-row

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \ldots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1) m .
$$

- Build copies of $F$ on each row of $A$

Theorem (Anstee 2000)
Let $F$ be the $1 \times \ell(0,1)$-row

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \ldots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1) m .
$$

- Build copies of $F$ on each row of $A$
- Every column of $A$ makes at least one contribution ( $A$ is simple)
- Thus, $\|A\| \leq$ \# contributions

Theorem (Anstee 2000)
Let $F$ be the $1 \times \ell(0,1)$-row

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \ldots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1) m .
$$

- Build copies of $F$ on each row of $A$
- Every column of $A$ makes at least one contribution ( $A$ is simple)
- Thus, $\|A\| \leq \#$ contributions
- But if $A$ has no $F$, then $\#$ contributions $\leq(\ell-1) m$ (pigeonhole)
- So $\mathrm{fs}(m, F) \leq(\ell-1) m$

Theorem (Anstee 2000)
Let $F$ be the $1 \times \ell(0,1)$-row

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \ldots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1) m .
$$

- Build copies of $F$ on each row of $A$
- Every column of $A$ makes at least one contribution ( $A$ is simple)
- Thus, $\|A\| \leq \#$ contributions
- But if $A$ has no $F$, then $\#$ contributions $\leq(\ell-1) m$ (pigeonhole)
- So $\mathrm{fs}(m, F) \leq(\ell-1) m$
- General single-row $F$ can be found in an $F$ of the above form


## Amortization idea

- We know that $\#$ contributions $\in O\left(m^{k}\right)$, but the conjecture says $\|A\| \in O\left(m^{k}\right)$
- In previous proof, we got lucky: every column made a contribution
- In general, this might only work "on average"
- Columns may make extra contributions that can be saved up and counted towards future columns that themselves fail to contribute (credit)


## Amortization idea

- We know that $\#$ contributions $\in O\left(m^{k}\right)$, but the conjecture says $\|A\| \in O\left(m^{k}\right)$
- In previous proof, we got lucky: every column made a contribution
- In general, this might only work "on average"
- Columns may make extra contributions that can be saved up and counted towards future columns that themselves fail to contribute (credit)
- Columns that fail to contribute may need future payment (debt)


## Amortization idea

- We know that $\#$ contributions $\in O\left(m^{k}\right)$, but the conjecture says $\|A\| \in O\left(m^{k}\right)$
- In previous proof, we got lucky: every column made a contribution
- In general, this might only work "on average"
- Columns may make extra contributions that can be saved up and counted towards future columns that themselves fail to contribute (credit)
- Columns that fail to contribute may need future payment (debt)
- Keep credit/debt in an account whose size is "small", so that we know "most" columns still make some contribution

Theorem
Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

Theorem
Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

- Every column either makes a contribution or is filler


## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

- Every column either makes a contribution or is filler
- Keep an account consisting of all possible fillers that might occur next (credit)


## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

- Every column either makes a contribution or is filler
- Keep an account consisting of all possible fillers that might occur next (credit)
- Fillers which do occur consume stored credit

Theorem
Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

Claims:

1. $\mid$ account $\mid \leq m+1$.

## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

Claims:

1. $\mid$ account $\mid \leq m+1$.
2. New credits (i.e. new fillers) come from excess contributions.

## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq(\ell-1)\binom{m}{2}+m+1 .
$$

Claims:

1. $\mid$ account $\mid \leq m+1$.
2. New credits (i.e. new fillers) come from excess contributions.

$$
\|A\| \leq \# \text { contributions }+m+1 \leq(\ell-1)\binom{m}{2}+m+1
$$

$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

- Initially, the account is

$$
\left\{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

because the next column of $F$ is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ on every pair of rows.

$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

- Initially, the account is

$$
\left\{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

because the next column of $F$ is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ on every pair of rows.

- Introduce a digraph on the row numbers $1,2, \ldots, m$ where

$$
i \longrightarrow j
$$

if the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ on rows $i, j$.

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2} \mathbf{3}
$$

1
2

2
3

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2}
$$

1
2

$2\left[\begin{array}{l}1 \\ 0\end{array}\right.$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2}
$$

1
2

$2\left[\begin{array}{l}1 \\ 0\end{array}\right.$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2},
$$

1 2
$\mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$
$\mathbf{3} \mathbf{3}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2} \mathbf{3}
$$

$$
\mathbf{1} \mathbf{2}\left[\begin{array} { l l l } 
{ \mathbf { 1 } }
\end{array} \left[\begin{array} { l l } 
{ 1 } & { 0 } \\
{ \mathbf { 3 } } & { \mathbf { 2 } }
\end{array} \left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right.\right.\right.
$$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{3} \mathbf{3}
$$

$\mathbf{1} \mathbf{2}\left[\begin{array}{lll}1 & \mathbf{1} \\ 0 & \mathbf{3}\end{array}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.\right.$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example

$$
A=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \mathbf{2} \mathbf{2} \mathbf{3}
$$

$\mathbf{1} \mathbf{2}\left[\begin{array}{lll}1 & \mathbf{1} \\ 0 & \mathbf{3}\end{array}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right.\right.$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

- Claim: the digraph is always a total order

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

- Claim: the digraph is always a total order
- Initially, all edges point down, i.e. the account is

$$
\left\{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

- Claim: the digraph is always a total order
- Initially, all edges point down, i.e. the account is

$$
\left\{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

- After processing a contributing column, "reverse shuffle" rows with 0's and 1's to make the column look like one of the above

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

## Example



$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

## Example



$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

## Example



$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

Example


$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

## Example



- Flipped edges are unflipped by the shuffling, resulting in a total order

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.

## Example



- Flipped edges are unflipped by the shuffling, resulting in a total order
- Filler columns always look the same (0's above 1 's) $\Rightarrow$ at most $m+1$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

- After the row shuffling, every filler column looks like
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1\end{array}\right]$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

- After the row shuffling, every filler column looks like
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1\end{array}\right]$
- Depending on location of split between 0's and 1's, the column might have looked the same before the shuffling $\Rightarrow$ not new

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

## Example



$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

## Example



$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

## Example



- $\leq 4-2$ new fillers, minus the current column

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

2. New credits (i.e. new fillers) come from excess contributions.

## Example



- $\leq 4-2$ new fillers, minus the current column
- $\geq 4-2$ contributions, minus one for the current column

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. $\mid$ account $\mid \leq m+1$.
2. New credits (i.e. new fillers) come from excess contributions.

$$
\|A\| \leq \# \text { contributions }+m+1 \leq(\ell-1)\binom{m}{2}+m+1
$$

Theorem
Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

- Use a debt-based approach: add columns to account now, pay later


## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

- Use a debt-based approach: add columns to account now, pay later
- Columns in account are attached to some subset of rows $1,2, \ldots, m$



## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

- Use a debt-based approach: add columns to account now, pay later
- Columns in account are attached to some subset of rows $1,2, \ldots, m$

- A contribution on some pair of rows pays for and deletes (up to 2 ) columns attached to either of those rows


## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

Claims:

1. Every column except for possibly one can be attached to some nonempty subset of the rows $1,2, \ldots, m$.

## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] .
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

Claims:

1. Every column except for possibly one can be attached to some nonempty subset of the rows $1,2, \ldots, m$.
2. No row is ever attached to more than one column.

## Theorem

Let $F$ be the $2 \times \ell(0,1)$-matrix

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right]
$$

Then

$$
\mathrm{fs}(m, F) \leq 2(\ell-1)\binom{m}{2}+m+1
$$

Claims:

1. Every column except for possibly one can be attached to some nonempty subset of the rows $1,2, \ldots, m$.
2. No row is ever attached to more than one column.

$$
\|A\| \leq 2 \cdot \# \text { contributions }+m+1 \leq 2(\ell-1)\binom{m}{2}+m+1 .
$$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- First, we reconsider the previous result using the new approach

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- First, we reconsider the previous result using the new approach
- After processing any column, and reordering if the column is contributing, the column looks like
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1\end{array}\right]$

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- First, we reconsider the previous result using the new approach
- After processing any column, and reordering if the column is contributing, the column looks like
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1\end{array}\right]$
- Attach to row number of the lowermost zero

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- First, we reconsider the previous result using the new approach
- After processing any column, and reordering if the column is contributing, the column looks like
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 1\end{array}\right]$
- Attach to row number of the lowermost zero
- Ignore the column of all 1's (this is our freebie)

$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

## Example



$$
F=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

## Example



- Any previous column attached to the same row is paid for and deleted

$$
F=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & \cdots \\
0 & 1 & 0 & 1 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

1. Every column not all 1's is attached to a row.
2. No row is ever attached to more than one column.

$$
\|A\| \leq 2 \cdot \# \text { contributions }+m+1 \leq 2(\ell-1)\binom{m}{2}+m+1
$$

- Note: we have an extra coefficient of 2 compared to the previous analysis

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order
- Consider the subgraph $T$ on the rows with a 0 in the current column

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order
- Consider the subgraph $T$ on the rows with a 0 in the current column
- $T$ must still be a tournament: can't be looking for [ $\left.\begin{array}{l}0 \\ 0\end{array}\right]$

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is $\begin{aligned} & i \\ & j\end{aligned}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order
- Consider the subgraph $T$ on the rows with a 0 in the current column
- $T$ must still be a tournament: can't be looking for [ $\left.\begin{array}{l}0 \\ 0\end{array}\right]$
- Let $S$ be the strongly connected component of $T$ to which every other vertex of $T$ points
- Attach the current column to all of $S$

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is $\begin{aligned} & i \\ & j\end{aligned}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order
- Consider the subgraph $T$ on the rows with a 0 in the current column
- $T$ must still be a tournament: can't be looking for [ $\left.\begin{array}{l}0 \\ 0\end{array}\right]$
- Let $S$ be the strongly connected component of $T$ to which every other vertex of $T$ points
- Attach the current column to all of $S$
- Claim: no row is ever attached to more than one column.

$$
F=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 1 & 0 & \cdots
\end{array}\right] \quad(\ell \text { columns })
$$

- Same strategy, except sometimes the next column of $F$ is ${ }_{j}^{i}\left[\begin{array}{l}0 \\ 0\end{array}\right]$ on rows $i, j$
- In this case, no edge between $i$ and $j$ in digraph
- Digraph not necessarily a total order
- Consider the subgraph $T$ on the rows with a 0 in the current column
- $T$ must still be a tournament: can't be looking for [ $\left.\begin{array}{l}0 \\ 0\end{array}\right]$
- Let $S$ be the strongly connected component of $T$ to which every other vertex of $T$ points
- Attach the current column to all of $S$
- Claim: no row is ever attached to more than one column.
- Proof: complicated

