# Critical Substructures 

Richard Anstee<br>UBC, Vancouver

## SIAM minisymposium on Extremal Combinatorics Knoxville, TN, March 24, 2013

A foundational result in Extremal Graph Theory is as follows. Let $e x(m, G)$ denote the maximum number of edges in a simple graph on $m$ vertices such that there is no subgraph $G$. The Turán graph $T(m, k)$ on $m$ vertices are formed by partitioning $m$ vertices into $k$ nearly equal sets and joining any pair of vertices in different sets.

A foundational result in Extremal Graph Theory is as follows. Let $e x(m, G)$ denote the maximum number of edges in a simple graph on $m$ vertices such that there is no subgraph $G$.
The Turán graph $T(m, k)$ on $m$ vertices are formed by partitioning $m$ vertices into $k$ nearly equal sets and joining any pair of vertices in different sets.
Theorem (Mantel 07, Turán 41) Let $K_{k}$ denote the clique on $k$ vertices (every pair of vertices are joined). Then $e x\left(m, K_{k}\right)=|E(T(m, k-1))|$.

## Graphs $\rightarrow$ Hypergraphs $\sim$ Simple Matrices

We say $\mathcal{H}=([m], \mathcal{E})$ is a hypergraph if $\mathcal{E} \subseteq 2^{[m]}$. The subsets in $\mathcal{E}$ are called hyperedges.

Consider a hypergraph $H=([4], \mathcal{E})$ with vertices $[4]=\{1,2,3,4\}$ and with the following hyperedges :

$$
\mathcal{E}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\} \subseteq 2^{[4]}
$$

The incidence matrix $A$ of the hyperedges $\mathcal{E} \subseteq 2^{[4]}$ is:

$$
A=\left[\begin{array}{ll|llll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

## Graphs $\rightarrow$ Hypergraphs $\sim$ Simple Matrices

We say $\mathcal{H}=([m], \mathcal{E})$ is a hypergraph if $\mathcal{E} \subseteq 2^{[m]}$. The subsets in $\mathcal{E}$ are called hyperedges.

Consider a hypergraph $H=([4], \mathcal{E})$ with vertices $[4]=\{1,2,3,4\}$ and with the following hyperedges:

$$
\mathcal{E}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\} \subseteq 2^{[4]}
$$

The incidence matrix $A$ of the hyperedges $\mathcal{E} \subseteq 2^{[4]}$ is:

$$
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition We say that a matrix $A$ is simple if it is a $(0,1)$-matrix with no repeated columns.
Definition We define $\|A\|$ to be the number of columns in $A$.

$$
\|A\|=6=|\mathcal{E}|
$$

## Subgraphs $\rightarrow$ Subhypergraphs $\sim$ Configurations

Definition Given a matrix $F$, we say that $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and column permutation of $F$.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

## $e x(m, G) \rightarrow$ forb $(m, F)$

We consider the property of forbidding a configuration $F$ in $A$. Definition Let
forb $(m, F)=\max \{\|A\|: A$-rowed simple, no configuration $F\}$

## $e x(m, G) \rightarrow$ forb $(m, F)$

We consider the property of forbidding a configuration $F$ in $A$. Definition Let
forb $(m, F)=\max \{\|A\|: A m$-rowed simple, no configuration $F\}$

$$
\text { e.g. forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1
$$

## Some Main Results

Let $K_{k}$ denote the $k \times 2^{k}$ simple matrix (all columns on $k$ rows)
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\text { forb }\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0} \text { which is } \Theta\left(m^{k-1}\right) \text {. }
$$

## Some Main Results

Let $K_{k}$ denote the $k \times 2^{k}$ simple matrix (all columns on $k$ rows)
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let $F$ be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.

## Some Main Results

Let $K_{k}$ denote the $k \times 2^{k}$ simple matrix (all columns on $k$ rows)
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let $F$ be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let $F$ be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.

## Some Main Results

Let $K_{k}$ denote the $k \times 2^{k}$ simple matrix (all columns on $k$ rows)
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let $F$ be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let $F$ be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.
Problem Given $F$, can we predict the behaviour of forb $(m, F)$ ?

## Results for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

## Results for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (Vapnik and Chervonenkis 71, Perles and Shelah 72, Sauer 72)

$$
\text { forb }\left(m, K_{4}\right)=\binom{m}{3}+\binom{m}{2}+\binom{m}{1}+\binom{m}{0} .
$$

## Critical Substructures

We define $F^{\prime}$ to a critical substructure of $F$ if $F^{\prime}$ is a configuration in $F$ and

$$
f \circ r b\left(m, F^{\prime}\right)=\text { forb }(m, F) .
$$

## Critical Substructures

We define $F^{\prime}$ to a critical substructure of $F$ if $F^{\prime}$ is a configuration in $F$ and

$$
f \circ r b\left(m, F^{\prime}\right)=f \circ r b(m, F)
$$

Note that for $F^{\prime \prime}$ which contains $F^{\prime}$ where $F^{\prime \prime}$ is contained in $F$, we deduce that

$$
f \circ r b\left(m, F^{\prime}\right)=\operatorname{forb}\left(m, F^{\prime \prime}\right)=\operatorname{forb}(m, F)
$$

## Critical Substructures for $K_{3}, K_{4}$

The critical substructures for $K_{3}$ follows from work of A, Karp 10 while the critical substructures for $K_{4}$ follows from work of A, Raggi 11. We need some difficult base cases to establish the critical substructures for $K_{5}$.


Miguel Raggi


Steven Karp

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{l|llll|lllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{lllll|llllll|lllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{lllllllllll|llllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{lllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

## Critical Substructures for $K_{4}$

$$
K_{4}=\left[\begin{array}{llllllllllllll|ll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Theorem The $k$-rowed critical substructures of $K_{k}$ are $K_{k}^{\ell}$ for $0 \leq \ell \leq k$.
Conjecture The critical substructures of $K_{k}$ are $K_{k}^{\ell}$ for $0 \leq \ell \leq k$ and $2 \cdot \mathbf{1}_{k-1}$ and $2 \cdot \mathbf{0}_{k-1}$.
The problem is in showing $\operatorname{forb}\left(m,\left[\mathbf{0}_{k-1} 2 \cdot K_{k-1}^{1} 2 \cdot K_{k-1}^{2} \cdots 2 \cdot K_{k-1}^{k-2} \mathbf{1}_{k-1}\right]\right)<\operatorname{forb}\left(m, K_{k}\right)$ and for this the problem is 'merely' establishing a base case.

## We can extend $K_{4}$ and yet have the same bound

Using induction, Connor and I were able to extend the bound of Sauer, Perles and Shelah, Vapnik and Chervonenkis. The base cases of the induction were critical.


Connor Meehan after receiving medal

## We can extend $K_{4}$ and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan 10) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{\mathbf{2}} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.

## We can extend $K_{4}$ and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan 10) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{\mathbf{2}} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.
We expect in fact that we could add many copies of the column $\mathbf{1}_{2} \mathbf{0}_{2}$ and obtain the same bound, albeit for larger values of $m$.

## We can extend $K_{4}$ and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan 10) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{\mathbf{2}} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.
We expect in fact that we could add many copies of the column $\mathbf{1}_{2} \mathbf{0}_{2}$ and obtain the same bound, albeit for larger values of $m$.
Are these critical superstructures?

We proved a number of results where $\operatorname{forb}\left(m,\left[K_{k} \mid F\right]\right)=\operatorname{forb}\left(m, K_{k}\right)$
and also where
forb $\left(m,\left[2 \cdot K_{k} \mid F^{\prime}\right]\right)=$ forb $\left(m, 2 \cdot K_{k}\right)$.

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Critical Substructure

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0
\end{array} 11000\right] ~
$$

## Critical Substructure

Theorem (A, Karp 10)

$$
f \circ r b(m, F) \leq\binom{ m}{2}+\binom{m}{1}+\binom{m}{0}+\binom{m}{m} .
$$

The unique construction is $\binom{[m]}{2} \cup\binom{[m]}{1} \cup\binom{[m]}{0} \cup\binom{[m]}{m}$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{llll}
{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right.} & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Critical Substructure

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{ll|ll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hline
\end{array}\right]
$$

Critical Substructure

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Critical Substructure
Theorem (A, Karp 10)

$$
\text { forb }(m, F) \leq\binom{ m}{2}+\binom{m}{1}+\binom{m}{0}+\binom{m}{m} .
$$

Two constructions are $\binom{[m]}{2} \cup\binom{[m]}{1} \cup\binom{[m]}{0} \cup\binom{[m]}{m}$ and $\binom{[m]}{0} \cup\binom{[m]}{m-2} \cup\binom{[m]}{m-1} \cup\binom{[m]}{m}$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
\begin{aligned}
& F=\left[\begin{array}{|ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& \text { Critical Substructure }
\end{aligned}
$$

We have a number of examples of critical substructures which builds our intuition on how the bounds are determined.

$$
F=\left[\begin{array}{lll}
\left.\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
\hline 1 & 0 & 0
\end{array}\right]
\end{array}\right.
$$

## Critical Substructure

Theorem (A, Karp 10)

$$
f \circ r b(m, F) \leq \frac{4}{3}\binom{m}{2}+\binom{m}{1}+\binom{m}{0}
$$

with equality for $m \equiv 1,3(\bmod 6)$.
For $m \equiv 1,3(\bmod 6)$, we can find a triple system on $m$ points with the property that for every pair $i, j$, there is precisely one triple containing $i, j$

There is an easy bound when forbidding a single column. Theorem

$$
f \circ r b\left(m, \mathbf{1}_{k} \mathbf{0}_{\ell}\right)=\sum_{i=0}^{k-1}\binom{m}{i}+\sum_{i=m-\ell+1}^{m}\binom{m}{i}
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{lll}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0
\end{array}\right]}
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0 \\
0
\end{array}\right]
$$



$$
\begin{aligned}
& \left.\qquad F=\begin{array}{|cc|}
\hline 1 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] \\
& \text { This is not a Critical Substructure }
\end{aligned}
$$

$$
\left.F=\llbracket \begin{array}{|ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

This is not a Critical Substructure
Theorem forb $(m, F)=4 m-4$ while forb $\left(m, \mathbf{1}_{2} \mathbf{0}_{2}\right)=2 m+2$.

$$
\begin{aligned}
& a\left\{\begin{array}{cc}
1 & 1 \\
: & : \\
1 & 1 \\
1 & 0 \\
: & : \\
1 & 0 \\
0 & 1 \\
: & : \\
0 & 1 \\
0 & 0 \\
: & : \\
0 & 0
\end{array}\right]
\end{aligned}
$$

A, Keevash 06 determine the asymptotics of $F_{a, b, c, d}$. The proof is unexpectedly hard and the constants are large. We should be able to do much better.
Columns of $F_{a, b, c, d}$ are $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$ and $\mathbf{1}_{a} \mathbf{0}_{b} \mathbf{1}_{c} \mathbf{0}_{d}$. If $a, b$ are relatively large compared with $c, d$, it would seem that $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$ is a critical substructure of $F_{a, b, c, d}$.

A, Keevash 06 determine the asymptotics of $F_{a, b, c, d}$. The proof is unexpectedly hard and the constants are large. We should be able to do much better.
Columns of $F_{a, b, c, d}$ are $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$ and $\mathbf{1}_{a} \mathbf{0}_{b} \mathbf{1}_{c} \mathbf{0}_{d}$. If $a, b$ are relatively large compared with $c, d$, it would seem that $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$ is a critical substructure of $F_{a, b, c, d}$.
Theorem (A, Karp 10) Let $a, b, c, d$ be given with $a \geq d$ and $b \geq c$.
forb $\left(m, F_{a, b, c, d}\right)=\operatorname{forb}\left(m, \mathbf{1}_{a+b} \mathbf{0}_{c+d}\right)$ i.e. $\mathbf{1}_{a+b} \mathbf{0}_{c+d}$ is a critical substructure of $F_{a, b, c, d}$.
for $(c, d)=(1,0)$ and $a \geq 1$ and $b \geq 2$ or $a=0$ and $b \geq 3$
for $(c, d)=(0,1)$ and $a \geq 1$ and $b \geq 1$
for $(c, d)=(1,1)$ and $a \geq 1$ and $b \geq 2$
Problem Give some conditions on $a, b, c, d$ so that forb $\left(m, F_{a, b, c, d}\right)=$ forb $\left(m, \mathbf{1}_{a+b} \mathbf{0}_{c+d}\right)$.

Thanks to Yi Zhao and Linyuan Lu for the invite

