Critical Substructures

Richard Anstee UBC, Vancouver

SIAM minisymposium on Extremal Combinatorics Knoxville, TN, March 24, 2013

A foundational result in Extremal Graph Theory is as follows. Let ex(m, G) denote the maximum number of edges in a simple graph on *m* vertices such that there is no subgraph *G*.

The Turán graph T(m, k) on m vertices are formed by partitioning m vertices into k nearly equal sets and joining any pair of vertices in different sets.

A foundational result in Extremal Graph Theory is as follows. Let ex(m, G) denote the maximum number of edges in a simple graph on *m* vertices such that there is no subgraph *G*.

The Turán graph T(m, k) on m vertices are formed by partitioning m vertices into k nearly equal sets and joining any pair of vertices in different sets.

Theorem (Mantel 07, Turán 41) Let K_k denote the clique on k vertices (every pair of vertices are joined). Then $ex(m, K_k) = |E(T(m, k - 1))|.$

伺 とう ヨン うちょう

$\mathsf{Graphs} \to \mathsf{Hypergraphs} \sim \mathsf{Simple} \mathsf{Matrices}$

We say $\mathcal{H} = ([m], \mathcal{E})$ is a hypergraph if $\mathcal{E} \subseteq 2^{[m]}$. The subsets in \mathcal{E} are called hyperedges.

Consider a hypergraph $H = ([4], \mathcal{E})$ with vertices $[4] = \{1, 2, 3, 4\}$ and with the following hyperedges :

 $\mathcal{E} = \left\{ \emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\} \right\} \subseteq 2^{[4]}$ The incidence matrix A of the hyperedges $\mathcal{E} \subseteq 2^{[4]}$ is:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$\mathsf{Graphs} \to \mathsf{Hypergraphs} \sim \mathsf{Simple} \; \mathsf{Matrices}$

We say $\mathcal{H} = ([m], \mathcal{E})$ is a hypergraph if $\mathcal{E} \subseteq 2^{[m]}$. The subsets in \mathcal{E} are called hyperedges.

Consider a hypergraph $H = ([4], \mathcal{E})$ with vertices $[4] = \{1, 2, 3, 4\}$ and with the following hyperedges :

 $\mathcal{E} = \left\{ \emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\} \right\} \subseteq 2^{[4]}$ The incidence matrix A of the hyperedges $\mathcal{E} \subseteq 2^{[4]}$ is:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

 $\|A\| = 6 = |\mathcal{E}| \qquad \text{ for a single set } a = b$

Definition We define ||A|| to be the number of columns in A.

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

白 ト イヨト イヨト

We consider the property of forbidding a configuration F in A. **Definition** Let $forb(m, F) = max\{||A|| : A m$ -rowed simple, no configuration $F\}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

We consider the property of forbidding a configuration F in A. **Definition** Let for F(x, F) are recalled a property of provide F(x, F).

 $forb(m, F) = \max\{||A|| : A \text{ m-rowed simple, no configuration } F\}$

e.g.
$$forb(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

同 と く ヨ と く ヨ と

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Corollary Let *F* be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$.

高 とう モン・ く ヨ と

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Corollary Let *F* be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$. **Theorem** (Füredi 83). Let *F* be a $k \times \ell$ matrix. Then forb $(m, F) = O(m^k)$.

高 とう モン・ く ヨ と

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Corollary Let *F* be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$. **Theorem** (Füredi 83). Let *F* be a $k \times \ell$ matrix. Then forb $(m, F) = O(m^k)$. **Problem** Given *F*, can we predict the behaviour of forb(m, F)?

伺 と く き と く き と

Richard Anstee UBC, Vancouver Critical Substructures

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Theorem (Vapnik and Chervonenkis 71, Perles and Shelah 72, Sauer 72)

forb
$$(m, K_4) = \binom{m}{3} + \binom{m}{2} + \binom{m}{1} + \binom{m}{0}$$
.

★御★ ★注★ ★注★

We define F' to a critical substructure of F if F' is a configuration in F and

$$forb(m, F') = forb(m, F).$$

æ

A ►

We define F' to a critical substructure of F if F' is a configuration in F and

$$forb(m, F') = forb(m, F).$$

Note that for F'' which contains F' where F'' is contained in F, we deduce that

$$forb(m, F') = forb(m, F'') = forb(m, F).$$

The critical substructures for K_3 follows from work of A, Karp 10 while the critical substructures for K_4 follows from work of A, Raggi 11. We need some difficult base cases to establish the critical substructures for K_5 .

Miguel Raggi

Steven Karp

Theorem The *k*-rowed critical substructures of K_k are K_k^{ℓ} for $0 \le \ell \le k$. **Conjecture** The critical substructures of K_k are K_k^{ℓ} for $0 \le \ell \le k$ and $2 \cdot \mathbf{1}_{k-1}$ and $2 \cdot \mathbf{0}_{k-1}$.

The problem is in showing forb(m, $[\mathbf{0}_{k-1} 2 \cdot K_{k-1}^1 2 \cdot K_{k-1}^2 \cdots 2 \cdot K_{k-1}^{k-2} \mathbf{1}_{k-1}]) < forb(m, K_k)$ and for this the problem is 'merely' establishing a base case.

伺 と く ヨ と く ヨ と

Using induction, Connor and I were able to extend the bound of Sauer, Perles and Shelah, Vapnik and Chervonenkis. The base cases of the induction were critical.

Connor Meehan after receiving medal

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

Theorem (A., Meehan 10) For $m \ge 5$, we have $forb(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

Theorem (A., Meehan 10) For $m \ge 5$, we have $forb(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

We expect in fact that we could add many copies of the column $\mathbf{1}_2 \mathbf{0}_2$ and obtain the same bound, albeit for larger values of *m*.

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

ſ	1	1	1	1	0	1	1	1	0	0	0	1	0	0	0	0	1]
	1	1	1	0	1	1	0	0	1	1	0	0	1	0	0	0	1
	1	1	0	1	1	0	1	0	1	0	1	0	0	1	0	0	0
	1	0	1	1	1	0	0	1	0	1	1	0	0	0	1	0	0

Theorem (A., Meehan 10) For $m \ge 5$, we have $forb(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

We expect in fact that we could add many copies of the column $\mathbf{1}_2\mathbf{0}_2$ and obtain the same bound, albeit for larger values of m. Are these critical superstructures? We proved a number of results where $forb(m, [K_k | F]) = forb(m, K_k)$ and also where $forb(m, [2 \cdot K_k | F']) = forb(m, 2 \cdot K_k)$.

同 と く ヨ と く ヨ と

$$F = \left[\begin{array}{rrrrr} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right]$$

æ

- ∢ ≣ ▶

$$F = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Critical Substructure

< ∃ >

$$F = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Critical Substructure

Theorem (A, Karp 10)

$$\mathit{forb}(m,F) \leq \binom{m}{2} + \binom{m}{1} + \binom{m}{0} + \binom{m}{m}$$

The unique construction is $\binom{[m]}{2} \cup \binom{[m]}{1} \cup \binom{[m]}{0} \cup \binom{[m]}{m}$

$$F = \left[\begin{array}{rrrrr} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

æ

- ∢ ≣ ▶

$$F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Critical Substructure

- < ∃ >

$$F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Critical Substructure

- < ∃ >

$$F = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Critical Substructure

Theorem (A, Karp 10)

$$forb(m, F) \leq \binom{m}{2} + \binom{m}{1} + \binom{m}{0} + \binom{m}{m}.$$

Two constructions are $\binom{[m]}{2} \cup \binom{[m]}{1} \cup \binom{[m]}{0} \cup \binom{[m]}{m}$ and $\binom{[m]}{0} \cup \binom{[m]}{m-2} \cup \binom{[m]}{m-1} \cup \binom{[m]}{m}$

$$F = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

æ

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Critical Substructure

글 > 글

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Critical Substructure

Theorem (A, Karp 10)

$$\mathit{forb}(m,F) \leq rac{4}{3}\binom{m}{2} + \binom{m}{1} + \binom{m}{0}$$

with equality for $m \equiv 1, 3 \pmod{6}$. For $m \equiv 1, 3 \pmod{6}$, we can find a triple system on *m* points with the property that for every pair *i*, *j*, there is precisely one triple containing *i*, *j*

There is an easy bound when forbidding a single column. **Theorem**

$$\mathit{forb}(m, \mathbf{1}_k \mathbf{0}_\ell) = \sum_{i=0}^{k-1} \binom{m}{i} + \sum_{i=m-\ell+1}^m \binom{m}{i}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

▲□ → ▲ □ → ▲ □ → …

Critical Substructures

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Is this a Critical Substructure?

イロト イヨト イヨト イヨト

$$F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

This is not a Critical Substructure

Richard Anstee UBC, Vancouver Critical Substructures

▲□→ ▲圖→ ▲厘→ ▲厘→

$$F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

This is not a Critical Substructure

Theorem for b(m, F) = 4m - 4 while for $b(m, \mathbf{1}_2 \mathbf{0}_2) = 2m + 2$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$F_{a,b,c,d} = \begin{cases} a \\ b \\ c \\ d \\ d \\ d \\ d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ \vdots \\ 1 & 1 \\ 1 & 0 \\ \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 0 & 1 \\ 0 & 0 \\ \vdots \\ 0 & 0 \end{bmatrix}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

A, Keevash 06 determine the asymptotics of $F_{a,b,c,d}$. The proof is unexpectedly hard and the constants are large. We should be able to do much better.

Columns of $F_{a,b,c,d}$ are $\mathbf{1}_{a+b}\mathbf{0}_{c+d}$ and $\mathbf{1}_a\mathbf{0}_b\mathbf{1}_c\mathbf{0}_d$. If a, b are relatively large compared with c, d, it would seem that $\mathbf{1}_{a+b}\mathbf{0}_{c+d}$ is a critical substructure of $F_{a,b,c,d}$.

伺 とう ヨン うちょう

A, Keevash 06 determine the asymptotics of $F_{a,b,c,d}$. The proof is unexpectedly hard and the constants are large. We should be able to do much better.

Columns of $F_{a,b,c,d}$ are $\mathbf{1}_{a+b}\mathbf{0}_{c+d}$ and $\mathbf{1}_a\mathbf{0}_b\mathbf{1}_c\mathbf{0}_d$. If a, b are relatively large compared with c, d, it would seem that $\mathbf{1}_{a+b}\mathbf{0}_{c+d}$ is a critical substructure of $F_{a,b,c,d}$.

Theorem (A, Karp 10) Let a, b, c, d be given with $a \ge d$ and b > c.

 $forb(m, F_{a,b,c,d}) = forb(m, \mathbf{1}_{a+b}\mathbf{0}_{c+d})$ i.e. $\mathbf{1}_{a+b}\mathbf{0}_{c+d}$ is a critical substructure of $F_{a,b,c,d}$.

for (c, d) = (1, 0) and $a \ge 1$ and $b \ge 2$ or a = 0 and $b \ge 3$ for (c, d) = (0, 1) and $a \ge 1$ and $b \ge 1$ for (c, d) = (1, 1) and $a \ge 1$ and $b \ge 2$

Problem Give some conditions on a, b, c, d so that

$$forb(m, F_{a,b,c,d}) = forb(m, \mathbf{1}_{a+b}\mathbf{0}_{c+d}).$$

▲□→ ▲目→ ▲目→ 二目

Thanks to Yi Zhao and Linyuan Lu for the invite

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □