Forbidden Configurations: Progress on a Conjecture

> Richard Anstee UBC, Vancouver

Joint work with Connor Meehan, Miguel Raggi, Attila Sali AMS, April 30, 2011 Las Vegas, Nevada

マロト イヨト イヨト

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

i.e. if A is m-rowed then A is the incidence matrix of some family A of subsets of $[m] = \{1, 2, ..., m\}$.

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{A} = \left\{ \emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\} \right\}$$

Definition We define ||A|| to be the number of columns in A.

$$||A|| = 6$$

- 本間 と えき と えき と しき

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F. **г** о

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

a 🗆

伺い イヨト イヨト

-

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A. **Definition** Let

 $forb(m, F) = \max\{||A|| : A \text{ m-rowed simple, no configuration } F\}$

Thus if A is any $m \times (forb(m, F) + 1)$ simple matrix then A contains the configuration F.

(1) マン・ション・

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Corollary Let *F* be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

Corollary Let *F* be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$. **Theorem** (Füredi 83). Let *F* be a $k \times \ell$ matrix. Then forb $(m, F) = O(m^k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Definition A *critical substructure* of a configuration F is a minimal configuration F' contained in F such that

$$forb(m, F') = forb(m, F).$$

A critical substructure has an associated construction avoiding it that yields a lower bound on forb(m, F). Some other argument provides the upper bound for forb(m, F). A consequence is that for a configuration F'' where F' is contained in F'' and F'' is contained in F, we deduce that

$$forb(m, F') = forb(m, F'') = forb(m, F).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

伺下 イヨト イヨト

向下 イヨト イヨト

伺下 イヨト イヨト

Critical k-rowed substructures for K_k on k rows are K_k^{ℓ} for $0 \le \ell \le k$. On k-1 rows we conjecture that $2 \cdot \mathbf{1}_{k-1}$ and $2 \cdot \mathbf{0}_{k-1}$ are the only critical k-1-rowed substructures. Proofs of required base cases elude us although computer investigations suggest we are correct.

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

Theorem (A., Meehan) For $m \ge 5$, we have $forb(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

Theorem (A., Meehan) For $m \ge 5$, we have forb $(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$. We expect in fact that we could add many copies of the column $\mathbf{1}_2\mathbf{0}_2$ and obtain the same bound, albeit for larger values of m.

向下 イヨト イヨト

The building blocks of our product constructions are I, I^c and T:

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I_4^c = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Theorem (Balogh, Bollobás 05) Let k be given. Then forb $(m, \{I_k, I_k^c, T_k\})$ is O(1).

A (2) × A (2) × A (2) ×

-

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m/p)^p$ i.e. $\Theta(m^p)$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m/p)^p$ i.e. $\Theta(m^p)$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$[01] \times [01] = K_2$$

$$\overbrace{[01] \times [01]}^k \times \cdots \times [01] = K_k$$

 $I_{m/2} \times I_{m/2}$ is vertex-edge incidence matrix of $K_{m/2,m/2}$

・ロト ・回ト ・ヨト ・ヨト

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

向下 イヨト イヨト

-

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{\times(F)})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{x(F)})$.

The conjecture has been verified for $k \times \ell F$ where k = 2 (A, Griggs, Sali 97) and k = 3 (A, Sali 05) and l = 2 (A, Keevash 06) and for k-rowed F with bounds $\Theta(m^{k-1})$ or $\Theta(m^k)$ (A, Fleming 10) plus other cases.

イロト イポト イヨト イヨト

-

In order for a 4-rowed F to have forb(m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

伺い イヨト イヨト

In order for a 4-rowed F to have forb(m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$F_{8}(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

回 と く ヨ と く ヨ と

$$F_{8}(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (A, Raggi, Sali 09) Let t be given. Then $forb(m, F_8(t))$ is $O(m^2)$. Moreover $F_8(t)$ is a boundary case, namely for any column α not already present t times in $F_8(t)$, then $forb(m, [F_8(t)|\alpha])$ is $\Omega(m^3)$.

The proof of the upper bound is currently a rather complicated induction with some directed graph arguments.

For each α there are $\Omega(m^3)$ product constructions avoiding $[F_8(t)|\alpha]$.

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb(m, F) is predicted to be $O(m^2)$ and for any column α we have $forb(m, [F|\alpha])$ being $\Omega(m^3)$. Such Fhappen all to be 5×6 simple matrices and we have handled the following case.

$$F_7 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Theorem (A, Raggi, Sali) $forb(m, F_7)$ is $O(m^2)$. The proof is currently a rather complicated induction.

・ 同 ト ・ 三 ト ・ 三 ト

All 6-rowed Configurations with Quadratic Bounds

$$G_{6\times3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Theorem (A,Raggi,Sali) Let *F* be any 6-rowed configuration. Then *forb*(*m*, *F*) is $O(m^2)$ if and only if *F* is a configuration in $G_{6\times3}$. **Proof:** We use induction and the bound for F_7 .

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let A be an $m \times forb(m, F_7)$ simple matrix with no configuration F_7 . We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 . Then

 $||A|| = forb(m, F_7) = ||B_r C_r D_r|| + ||C_r|| \le forb(m - 1, F_7) + ||C_r||.$ To show ||A|| is quadratic it would suffice to show $||C_r||$ is linear for some choice of r.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Let C_r be an (m-1)-rowed simple matrix with no configuration in \mathcal{F} . We can select a row s and reorder rows and columns to obtain

$$C_r = \operatorname{row} s \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_s & G_s & G_s & H_s \end{bmatrix}$$

To show $||C_r||$ is linear it would suffice to show $||G_s||$ is bounded by a constant for some choice of s. Our proof shows that assuming $||G_s|| \ge 8$ for all choices s results in a contradiction. This repeated induction is used to show that $forb(m, F_7)$ is $O(m^2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (A,Raggi,Sali) forb(m, { $T_2 \times T_2$, $T_2 \times I_2$, $I_2 \times I_2$ }) is $\Theta(m^{3/2})$.

$$T_{2} \times T_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \ T_{2} \times I_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix},$$
$$I_{2} \times I_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

・ 同 ト ・ 国 ト ・ 国 ト

Let A be an $m \times forb(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, T_2 \times I_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

To show ||A|| is $O(m^{3/2})$ it would suffice to show $||C_r||$ is $O(m^{1/2})$ for some choice of r. Our proof shows that assuming $||C_r|| > 16m^{1/2}$ for all choices r results in a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

THANKS to the session organizers Jozsef and Ryan!

イロン イヨン イヨン

3