Forbidden Configurations: Progress on a Conjecture

Richard Anstee
UBC, Vancouver

Joint work with Connor Meehan, Miguel Raggi, Attila Sali
AMS, April 30, 2011
Las Vegas, Nevada

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
\end{gathered}
$$

Definition We define $\|A\|$ to be the number of columns in A.

$$
\|A\|=6
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & \hline 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=
$$

We consider the property of forbidding a configuration F in A.
Definition Let
forb $(m, F)=\max \{\|A\|: A$-rowed simple, no configuration $F\}$

Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains the configuration F.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.

Critical Substructures

Definition A critical substructure of a configuration F is a minimal configuration F^{\prime} contained in F such that

$$
f \circ r b\left(m, F^{\prime}\right)=\text { forb }(m, F)
$$

A critical substructure has an associated construction avoiding it that yields a lower bound on forb (m, F).
Some other argument provides the upper bound for forb (m, F). A consequence is that for a configuration $F^{\prime \prime}$ where F^{\prime} is contained in $F^{\prime \prime}$ and $F^{\prime \prime}$ is contained in F, we deduce that

$$
f \circ r b\left(m, F^{\prime}\right)=\text { forb }\left(m, F^{\prime \prime}\right)=\text { forb }(m, F)
$$

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
\left.K_{4}=\llbracket \begin{array}{|ccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{l|llll|lllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllll|llllll|lllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$ $=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllllllllll|llll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
\left.K_{4}=\begin{array}{|l|llllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllll|ll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{k} ?

Critical k-rowed substructures for K_{k} on k rows are K_{k}^{ℓ} for $0 \leq \ell \leq k$. On $k-1$ rows we conjecture that $2 \cdot \mathbf{1}_{k-1}$ and $2 \cdot \mathbf{0}_{k-1}$ are the only critical $k-1$-rowed substructures. Proofs of required base cases elude us although computer investigations suggest we are correct.

We can extend K_{4} and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=\operatorname{forb}\left(m, K_{4}\right)$.

We can extend K_{4} and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=\operatorname{forb}\left(m, K_{4}\right)$.
We expect in fact that we could add many copies of the column $\mathbf{1}_{2} \mathbf{0}_{2}$ and obtain the same bound, albeit for larger values of m.

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :
$I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
Theorem (Balogh, Bollobás 05) Let k be given. Then forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)$ is $O(1)$.

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times(m / p)^{p}$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times(m / p)^{p}$ i.e. $\Theta\left(m^{p}\right)$ columns.

Examples

$$
\begin{gathered}
{[01] \times[01]=K_{2}} \\
\overbrace{[01] \times[01] \times \cdots \times[01]}^{k}=K_{k}
\end{gathered}
$$

$I_{m / 2} \times I_{m / 2}$ is vertex-edge incidence matrix of $K_{m / 2, m / 2}$

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
Definition Let F be given. Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
Definition Let F be given. Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
The conjecture has been verified for $k \times \ell F$ where $k=2(\mathrm{~A}$, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $I=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ (A, Fleming 10) plus other cases.

In order for a 4-rowed F to have forb (m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

In order for a 4-rowed F to have forb (m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A, Raggi, Sali 09) Let t be given. Then forb $\left(m, F_{8}(t)\right)$ is $O\left(m^{2}\right)$. Moreover $F_{8}(t)$ is a boundary case, namely for any column α not already present t times in $F_{8}(t)$, then forb $\left(m,\left[F_{8}(t) \mid \alpha\right]\right)$ is $\Omega\left(m^{3}\right)$.
The proof of the upper bound is currently a rather complicated induction with some directed graph arguments.
For each α there are $\Omega\left(m^{3}\right)$ product constructions avoiding $\left[F_{8}(t) \mid \alpha\right]$.

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb (m, F) is predicted to be $O\left(m^{2}\right)$ and for any column α we have forb $(m,[F \mid \alpha])$ being $\Omega\left(m^{3}\right)$. Such F happen all to be 5×6 simple matrices and we have handled the following case.

$$
F_{7}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (A, Raggi, Sali) forb $\left(m, F_{7}\right)$ is $O\left(m^{2}\right)$.
The proof is currently a rather complicated induction.

All 6-rowed Configurations with Quadratic Bounds

$$
G_{6 \times 3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Theorem (A,Raggi,Sali) Let F be any 6 -rowed configuration. Then forb (m, F) is $O\left(m^{2}\right)$ if and only if F is a configuration in $G_{6 \times 3}$.
Proof: We use induction and the bound for F_{7}.

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\operatorname{row} r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now $\left[B_{r} C_{r} D_{r}\right]$ is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.
Then
$\|A\|=\operatorname{forb}\left(m, F_{7}\right)=\left\|B_{r} C_{r} D_{r}\right\|+\left\|C_{r}\right\| \leq \operatorname{forb}\left(m-1, F_{7}\right)+\left\|C_{r}\right\|$.
To show $\|A\|$ is quadratic it would suffice to show $\left\|C_{r}\right\|$ is linear for some choice of r.

Repeated Induction

Let C_{r} be an $(m-1)$-rowed simple matrix with no configuration in \mathcal{F}. We can select a row s and reorder rows and columns to obtain

$$
C_{r}=\operatorname{row} s\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
E_{s} & & G_{s} & G_{s} & & H_{s}
\end{array}\right] .
$$

To show $\left\|C_{r}\right\|$ is linear it would suffice to show $\left\|G_{s}\right\|$ is bounded by a constant for some choice of s. Our proof shows that assuming $\left\|G_{s}\right\| \geq 8$ for all choices s results in a contradiction. This repeated induction is used to show that forb $\left(m, F_{7}\right)$ is $O\left(m^{2}\right)$.

An unusual Bound

Theorem (A,Raggi,Sali) forb $\left(m,\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.

$$
\begin{gathered}
T_{2} \times T_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], T_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

To show $\|A\|$ is $O\left(m^{3 / 2}\right)$ it would suffice to show $\left\|C_{r}\right\|$ is $O\left(m^{1 / 2}\right)$ for some choice of r. Our proof shows that assuming $\left\|C_{r}\right\|>16 m^{1 / 2}$ for all choices r results in a contradiction.

THANKS to the session organizers Jozsef and Ryan!

