Forbidden Configurations: Progress on a Conjecture

> Richard Anstee, UBC, Vancouver

Joint work with Miguel Raggi, Attila Sali CanaDAM, June 2, 2011 University of Victoria

- 4 周 ト - 4 日 ト - 4 日 ト

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

i.e. if A is *m*-rowed then A is the incidence matrix of some family A of subsets of $[m] = \{1, 2, ..., m\}$.

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{A} = \left\{ \emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\} \right\}$$

Definition We define ||A|| to be the number of columns in A.

$$||A|| = 6$$

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

-

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A. **Definition** Let $forb(m, F) = max\{||A|| : A m$ -rowed simple, no configuration $F\}$

イロト イポト イヨト イヨト

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

 $forb(m, K_k) = \max\{||A|| : A \text{ has } VC - \text{dimension } k - 1\}$

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

forb $(m, K_k) = \max\{||A|| : A \text{ has } VC - \text{dimension } k - 1\}$ Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$.

(4月) (4日) (4日)

Definition Let K_k denote the $k \times 2^k$ simple matrix of all possible columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

forb
$$(m, K_k) = \binom{m}{k-1} + \binom{m}{k-2} + \cdots + \binom{m}{0}$$
 which is $\Theta(m^{k-1})$.

forb $(m, K_k) = \max\{||A|| : A \text{ has } VC - \text{dimension } k - 1\}$ Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F) = O(m^{k-1})$. Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F) = O(m^k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The building blocks of our product constructions are I, I^c and T, e.g:

$$I_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad I_{4}^{c} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, \quad T_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

向下 イヨト イヨト

э

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m/p)^p$ i.e. $\Theta(m^p)$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m/p)^p$ i.e. $\Theta(m^p)$ columns.

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$[01] \times [01] = K_2$$

$$\overbrace{[01] \times [01] \times \cdots \times [01]}^k = K_k$$

 $I_{m/2} imes I_{m/2}$ is vertex-edge incidence matrix of $K_{m/2,m/2}$

・回 ・ ・ ヨ ・ ・ ヨ ・

Э

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

向下 イヨト イヨト

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{x(F)})$.

(4月) (4日) (4日)

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) forb(m, F) is $\Theta(m^{\times(F)})$.

The conjecture has been verified for $k \times \ell F$ where k = 2 (A, Griggs, Sali 97) and k = 3 (A, Sali 05) and $\ell = 2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta(m^{k-1})$ or $\Theta(m^k)$ (A, Fleming 10) plus other cases.

・ロン ・回 と ・ 回 と ・ 回 と

Let G be a given graph. We define ex(m, G) to be the maximum number of edges in a graph on m vertices which has no subgraph isomorphic to G. Let F denote the vertex-edge incidence matrix of graph G. Then

forb
$$(m, \left\{F, \begin{bmatrix}1\\1\\1\end{bmatrix}\right\}) = ex(m, G) + m + 1.$$

向下 イヨト イヨト

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that $forb(m, \{I_k, I_k^c, T_k\}) = c_k$.

イロト イポト イヨト イヨト

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that forb $(m, \{I_k, I_k^c, T_k\}) = c_k$.

Theorem (A. and Meehan 11) Let p, k be given with $p \ge 3k$. Let $F = [\mathbf{0}_k | I_k] \times [\mathbf{0}_k | T_k] \times [I_k^c | \mathbf{1}_k] \times K_{p-3k}$. Then forb(m, F) is $\Theta(m^{p-k})$.

イロト イポト イヨト イヨト

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that forb $(m, \{I_k, I_k^c, T_k\}) = c_k$.

Theorem (A. and Meehan 11) Let p, k be given with $p \ge 3k$. Let $F = [\mathbf{0}_k | I_k] \times [\mathbf{0}_k | T_k] \times [I_k^c | \mathbf{1}_k] \times K_{p-3k}$. Then forb(m, F) is $\Theta(m^{p-k})$. Moreover F is a boundary case, namely for any column α not in F we have that forb $(m, [F|\alpha])$ is $\Omega(m^{p-k+1})$.

イロト イポト イヨト イヨト

Using a result of A. and Fleming 10, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

伺下 イヨト イヨト

Using a result of A. and Fleming 10, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$F_{8}(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

伺下 イヨト イヨト

$$F_8(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (A, Raggi, Sali 09) Let t be given. Then $forb(m, F_8(t))$ is $\Theta(m^2)$. Moreover $F_8(t)$ is a boundary case, namely for any column α not already present t times in $F_8(t)$, then $forb(m, [F_8(t)|\alpha])$ is $\Omega(m^3)$.

The proof of the upper bound is currently a rather complicated induction with some directed graph arguments.

向下 イヨト イヨト

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb(m, F) is predicted to be $\Theta(m^2)$ and for any column α we have $forb(m, [F|\alpha])$ being $\Omega(m^3)$. Such Fhappen all to be 5×6 simple matrices and we have handled the following case.

$$F_{7} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Theorem (A, Raggi, Sali) forb (m, F_7) is $\Theta(m^2)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb(m, F) is predicted to be $\Theta(m^2)$ and for any column α we have $forb(m, [F|\alpha])$ being $\Omega(m^3)$. Such Fhappen all to be 5×6 simple matrices and we have handled the following case.

$$F_7 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Theorem (A, Raggi, Sali) $forb(m, F_7)$ is $\Theta(m^2)$. The proof is currently a rather complicated induction.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$G_{6\times3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Theorem (A,Raggi,Sali) Let *F* be any 6-rowed configuration. Then forb(m, F) is $\Theta(m^2)$ if *F* is a configuration in $G_{6\times 3}$ and forb(m, F) is $\Omega(m^3)$ if *F* is not a configuration in $G_{6\times 3}$. **Proof:** We use induction and the bound for F_7 .

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

イロト イヨト イヨト イヨト

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

 C_r has no F in

$$\mathcal{F} = \left\{ \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \right\}$$

æ

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$A = \begin{array}{ccccc} \operatorname{row} r & \left[\begin{array}{ccccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 . Then

 $||A|| = forb(m, F_7) = ||B_r C_r D_r|| + ||C_r|| \le forb(m - 1, F_7) + ||C_r||.$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$A = \begin{array}{ccccc} \operatorname{row} r & \left[\begin{array}{ccccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 . Then

 $||A|| = forb(m, F_7) = ||B_r C_r D_r|| + ||C_r|| \le forb(m - 1, F_7) + ||C_r||.$ To show *forb*(*m*, *F*₇) is quadratic it would suffice to show $||C_r||$ is linear for some choice of *r*.

Let C_r be an (m-1)-rowed simple matrix with no configuration in \mathcal{F} . We can select a row s_i and reorder rows and columns to obtain

$$C_r = \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & & G_i & G_i & & H_i \end{bmatrix}.$$

To show $||C_r||$ is linear it would suffice to show $||G_i||$ is bounded by a constant for some choice of s_i . Our proof shows that assuming $||G_i|| \ge 8$ for all choices s_i results in a contradiction.

伺下 イヨト イヨト

Let C_r be an (m-1)-rowed simple matrix with no configuration in \mathcal{F} . We can select a row s_i and reorder rows and columns to obtain

$$C_r = \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & & G_i & G_i & & H_i \end{bmatrix}.$$

To show $||C_r||$ is linear it would suffice to show $||G_i||$ is bounded by a constant for some choice of s_i . Our proof shows that assuming $||G_i|| \ge 8$ for all choices s_i results in a contradiction.

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple.

・ 同 ト ・ ヨ ト ・ ヨ ト

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$.

・ 回 と ・ ヨ と ・ ヨ と

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline & \operatorname{columns} \subseteq [\mathbf{0}|I] \end{array} \end{bmatrix} L_i$$

•

・ 回 と ・ ヨ と ・ ヨ と

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline columns \subseteq [\mathbf{1}|I^c] \end{bmatrix} \} L_i$$

•

(ロ) (同) (E) (E) (E)

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline columns \subseteq [0|T] \end{array} \end{bmatrix} L_i$$

•

(ロ) (同) (E) (E) (E)

```
We may choose s_1 and form L_1.
Then choose s_2 \in L_1 and form L_2.
Then choose s_3 \in L_2 and form L_3.
etc.
We can show the sets L_1 \setminus s_2, L_2 \setminus s_3, L_3 \setminus s_4, \ldots are disjoint.
Assuming ||G_i|| \ge 8 for all choices s_i results in |L_i \setminus s_{i+1}| \ge 3 which yields a contradiction.
```

伺下 イヨト イヨト

Theorem (A,Raggi,Sali 10) *forb*(m, { $T_2 \times T_2$, $T_2 \times I_2$, $I_2 \times I_2$ }) *is* $\Theta(m^{3/2})$.

$$T_{2} \times T_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \ T_{2} \times I_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix},$$
$$I_{2} \times I_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

(1日) (日) (日)

Let A be an $m \times forb(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, T_2 \times I_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let A be an $m \times forb(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F} = \{T_2 \times T_2, T_2 \times I_2, I_2 \times I_2\}$. We can select a row r and reorder rows and columns to obtain

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & D_r \end{array} \right].$$

To show ||A|| is $O(m^{3/2})$ it would suffice to show $||C_r||$ is $O(m^{1/2})$ for some choice of r. Our proof shows that assuming $||C_r|| > 36m^{1/2}$ for all choices r results in a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

THANKS to University of Victoria for hosting this conference!

イロン イヨン イヨン イヨン

æ

 $[K_4|\mathbf{1}_2\mathbf{0}_2] =$

Theorem (A., Meehan) For $m \ge 5$, we have $forb(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

 $[{\it K}_4|{\bf 1}_2{\bf 0}_2] =$

Theorem (A., Meehan) For $m \ge 5$, we have forb $(m, [K_4|\mathbf{1}_2\mathbf{0}_2]) = forb(m, K_4)$.

We expect in fact that we could add many copies of the column $\mathbf{1}_2 \mathbf{0}_2$ and obtain the same bound, albeit for larger values of *m*.

向下 イヨト イヨト