Forbidden Configurations: Progress on a Conjecture

Richard Anstee, UBC, Vancouver

Joint work with Miguel Raggi, Attila Sali CanaDAM, June 2, 2011
University of Victoria

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
\end{gathered}
$$

Definition We define $\|A\|$ to be the number of columns in A.

$$
\|A\|=6
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A. Definition Let
forb $(m, F)=\max \{\|A\|: A m$-rowed simple, no configuration $F\}$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
forb $\left(m, K_{k}\right)=\max \{\|A\|: A$ has $V C-$ dimension $k-1\}$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
forb $\left(m, K_{k}\right)=\max \{\|A\|: A$ has $V C-$ dimension $k-1\}$
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
forb $\left(m, K_{k}\right)=\max \{\|A\|: A$ has $V C-$ dimension $k-1\}$
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.

A Product Construction

The building blocks of our product constructions are I, I^{c} and T, e.g:

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times(m / p)^{p}$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll|lll|lll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times(m / p)^{p}$ i.e. $\Theta\left(m^{p}\right)$ columns.

Examples

$$
[01] \times[01]=K_{2}
$$

$I_{m / 2} \times I_{m / 2}$ is vertex-edge incidence matrix of $K_{m / 2, m / 2}$

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

Definition Let F be given. Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
Definition Let F be given. Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
The conjecture has been verified for $k \times \ell F$ where $k=2(\mathrm{~A}$, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $\ell=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ (A, Fleming $10)$ plus other cases.

Forbidden Families are Difficult

Let G be a given graph. We define $\operatorname{ex}(m, G)$ to be the maximum number of edges in a graph on m vertices which has no subgraph isomorphic to G. Let F denote the vertex-edge incidence matrix of graph G. Then

$$
\text { forb }\left(m,\left\{F,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}\right)=\operatorname{ex}(m, G)+m+1
$$

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_{k} so that forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_{k} so that forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.
Theorem (A. and Meehan 11) Let p, k be given with $p \geq 3 k$. Let $F=\left[\mathbf{0}_{k} \mid I_{k}\right] \times\left[\mathbf{0}_{k} \mid T_{k}\right] \times\left[I_{k}^{c} \mid \mathbf{1}_{k}\right] \times K_{p-3 k}$. Then forb (m, F) is $\Theta\left(m^{p-k}\right)$.

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_{k} so that forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.
Theorem (A. and Meehan 11) Let p, k be given with $p \geq 3 k$. Let $F=\left[\mathbf{0}_{k} \mid I_{k}\right] \times\left[\mathbf{0}_{k} \mid T_{k}\right] \times\left[I_{k}^{c} \mid \mathbf{1}_{k}\right] \times K_{p-3 k}$. Then forb (m, F) is $\Theta\left(m^{p-k}\right)$.
Moreover F is a boundary case, namely for any column α not in F we have that forb $(m,[F \mid \alpha])$ is $\Omega\left(m^{p-k+1}\right)$.

Using a result of A . and Fleming 10, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

Using a result of A . and Fleming 10, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A, Raggi, Sali 09) Let t be given. Then forb $\left(m, F_{8}(t)\right)$ is $\Theta\left(m^{2}\right)$. Moreover $F_{8}(t)$ is a boundary case, namely for any column α not already present t times in $F_{8}(t)$, then forb $\left(m,\left[F_{8}(t) \mid \alpha\right]\right)$ is $\Omega\left(m^{3}\right)$.
The proof of the upper bound is currently a rather complicated induction with some directed graph arguments.

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb (m, F) is predicted to be $\Theta\left(m^{2}\right)$ and for any column α we have forb $(m,[F \mid \alpha])$ being $\Omega\left(m^{3}\right)$. Such F happen all to be 5×6 simple matrices and we have handled the following case.

$$
F_{7}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (A, Raggi, Sali) forb $\left(m, F_{7}\right)$ is $\Theta\left(m^{2}\right)$.

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F which are boundary cases, namely forb (m, F) is predicted to be $\Theta\left(m^{2}\right)$ and for any column α we have forb $(m,[F \mid \alpha])$ being $\Omega\left(m^{3}\right)$. Such F happen all to be 5×6 simple matrices and we have handled the following case.

$$
F_{7}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (A, Raggi, Sali) forb $\left(m, F_{7}\right)$ is $\Theta\left(m^{2}\right)$.
The proof is currently a rather complicated induction.

All 6-rowed Configurations with Quadratic Bounds

$$
G_{6 \times 3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Theorem (A,Raggi,Sali) Let F be any 6-rowed configuration. Then forb (m, F) is $\Theta\left(m^{2}\right)$ if F is a configuration in $G_{6 \times 3}$ and forb (m, F) is $\Omega\left(m^{3}\right)$ if F is not a configuration in $G_{6 \times 3}$.
Proof: We use induction and the bound for F_{7}.

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Induction

Let A be an $m \times \operatorname{forb}\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now [$B_{r} C_{r} D_{r}$] is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.

C_{r} has no F in

$$
\mathcal{F}=\left\{\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]\right\}
$$

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now $\left[B_{r} C_{r} D_{r}\right]$ is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now $\left[B_{r} C_{r} D_{r}\right]$ is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.
Then
$\|A\|=\operatorname{forb}\left(m, F_{7}\right)=\left\|B_{r} C_{r} D_{r}\right\|+\left\|C_{r}\right\| \leq \operatorname{forb}\left(m-1, F_{7}\right)+\left\|C_{r}\right\|$.

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now $\left[B_{r} C_{r} D_{r}\right]$ is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.
Then
$\|A\|=$ forb $\left(m, F_{7}\right)=\left\|B_{r} C_{r} D_{r}\right\|+\left\|C_{r}\right\| \leq \operatorname{forb}\left(m-1, F_{7}\right)+\left\|C_{r}\right\|$.
To show forb $\left(m, F_{7}\right)$ is quadratic it would suffice to show $\left\|C_{r}\right\|$ is linear for some choice of r.

Repeated Induction

Let C_{r} be an $(m-1)$-rowed simple matrix with no configuration in \mathcal{F}. We can select a row s_{i} and reorder rows and columns to obtain

$$
C_{r}=\operatorname{row} s_{i}\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
E_{i} & & G_{i} & G_{i} & & H_{i}
\end{array}\right]
$$

To show $\left\|C_{r}\right\|$ is linear it would suffice to show $\left\|G_{i}\right\|$ is bounded by a constant for some choice of s_{i}. Our proof shows that assuming $\left\|G_{i}\right\| \geq 8$ for all choices s_{i} results in a contradiction.

Repeated Induction

Let C_{r} be an $(m-1)$-rowed simple matrix with no configuration in \mathcal{F}. We can select a row s_{i} and reorder rows and columns to obtain

$$
C_{r}=\operatorname{row} s_{i}\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
E_{i} & & G_{i} & G_{i} & & H_{i}
\end{array}\right]
$$

To show $\left\|C_{r}\right\|$ is linear it would suffice to show $\left\|G_{i}\right\|$ is bounded by a constant for some choice of s_{i}. Our proof shows that assuming $\left\|G_{i}\right\| \geq 8$ for all choices s_{i} results in a contradiction. Idea: Select a minimal set of rows L_{i} so that $G_{i} \mid L_{i}$ is simple.

Idea: Select a minimal set of rows L_{i} so that $G_{i} \mid L_{i}$ is simple. We first discover $G_{i} \mid L_{i}=[\mathbf{0} \mid I]$ or $\left[\mathbf{1} \mid I^{c}\right]$ or $[\mathbf{0} \mid T]$.

Idea: Select a minimal set of rows L_{i} so that $\left.G_{i}\right|_{L_{i}}$ is simple. We first discover $G_{i} \mid L_{i}=[\mathbf{0} \mid I]$ or $\left[\mathbf{1} \mid I^{c}\right]$ or $[\mathbf{0} \mid T]$.
Then we discover:

$$
\left.C_{r}=\begin{array}{c}
\text { row } s_{i} \\
L_{i}\{
\end{array}\left[\right]\right\} L_{i} .
$$

Idea: Select a minimal set of rows L_{i} so that $G_{i} \mid L_{i}$ is simple. We first discover $G_{i} \mid L_{i}=[\mathbf{0} \mid I]$ or $\left[\mathbf{1} \mid I^{C}\right]$ or $[\mathbf{0} \mid T]$.
Then we discover:

$$
\left.C_{r}=\begin{array}{c}
\text { row } s_{i} \\
L_{i}\{
\end{array}\left[\right]\right\} L_{i}
$$

Idea: Select a minimal set of rows L_{i} so that $G_{i} \mid L_{i}$ is simple. We first discover $G_{i} \mid L_{i}=[\mathbf{0} \mid I]$ or $\left[\mathbf{1} \mid I^{C}\right]$ or $[\mathbf{0} \mid T]$.
Then we discover:

$$
\left.C_{r}=\begin{array}{c}
\text { row } s_{i} \\
L_{i}\{
\end{array}\left[\right]\right\} L_{i}
$$

We may choose s_{1} and form L_{1}.
Then choose $s_{2} \in L_{1}$ and form L_{2}.
Then choose $s_{3} \in L_{2}$ and form L_{3}.
etc.
We can show the sets $L_{1} \backslash s_{2}, L_{2} \backslash s_{3}, L_{3} \backslash s_{4}, \ldots$ are disjoint. Assuming $\left\|G_{i}\right\| \geq 8$ for all choices s_{i} results in $\left|L_{i} \backslash s_{i+1}\right| \geq 3$ which yields a contradiction.

An unusual Bound

Theorem (A,Raggi,Sali 10) forb $\left(m,\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.

$$
\begin{gathered}
T_{2} \times T_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], T_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Induction

Let A be an $m \times$ forb (m, \mathcal{F}) simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\operatorname{row} r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right] .
$$

Induction

Let A be an $m \times$ forb (m, \mathcal{F}) simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

To show $\|A\|$ is $O\left(m^{3 / 2}\right)$ it would suffice to show $\left\|C_{r}\right\|$ is $O\left(m^{1 / 2}\right)$ for some choice of r. Our proof shows that assuming $\left\|C_{r}\right\|>36 \mathrm{~m}^{1 / 2}$ for all choices r results in a contradiction.

THANKS to University of Victoria for hosting this conference!

We can extend K_{4} and still have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.

We can extend K_{4} and still have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.
We expect in fact that we could add many copies of the column $\mathbf{1}_{2} \mathbf{0}_{2}$ and obtain the same bound, albeit for larger values of m.

