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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is m-rowed then A is the incidence matrix of some family
A of subsets of [m] = {1, 2, . . . ,m}.

A =







0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0







A =
{
∅, {1, 2, 4}, {1, 4}, {1, 2}, {1, 2, 3}, {1, 3}

}
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Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

i.e. if A is m-rowed then A is the incidence matrix of some family
A of subsets of [m] = {1, 2, . . . ,m}.

A =







0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0







A =
{
∅, {1, 2, 4}, {1, 4}, {1, 2}, {1, 2, 3}, {1, 3}

}

Definition We define |A| to be the number of columns in A.

|A| = 6
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]

∈ A =







0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]

∈ A =







0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0







We consider the property of forbidding a configuration F in A for
which we say F is a forbidden configuration in A.
Definition Let

forb(m,F )= max{|A| : A m-rowed simple, no configuration F}

Thus if A is any m × (forb(m,F ) + 1) simple matrix then A

contains the configuration F .

Richard Anstee UBC, Vancouver Forbidden Configurations: Progress on a Conjecture



Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]

∈ A =







0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0







We consider the property of forbidding a configuration F in A for
which we say F is a forbidden configuration in A.
Definition Let

forb(m,F )= max{|A| : A m-rowed simple, no configuration F}

Thus if A is any m × (forb(m,F ) + 1) simple matrix then A

contains the configuration F .

For example, forb(m,

[
1 0
0 1

]

) = m + 1.
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(
m

k − 1

)

+

(
m

k − 2

)

+ · · ·+

(
m

0

)

which is Θ(mk−1)
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(
m

k − 1

)

+

(
m

k − 2

)

+ · · ·+

(
m

0

)

which is Θ(mk−1)

Corollary Let F be a k × ` simple matrix. Then

forb(m,F ) = O(mk−1)
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Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk ) =

(
m

k − 1

)

+

(
m

k − 2

)

+ · · ·+

(
m

0

)

which is Θ(mk−1)

Corollary Let F be a k × ` simple matrix. Then

forb(m,F ) = O(mk−1)

Theorem (Füredi 83). Let F be a k × ` matrix. Then

forb(m,F ) = O(mk)
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A Product Construction

The building blocks of our product constructions are I , I c and T :

I4 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







, I c
4 =







0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0







, T4 =







1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1







Note that
[
1
1

]

/∈ I ,

[
0
0

]

/∈ I c ,

[
1 0
0 1

]

/∈ T
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Definition Given an m1 × n1 matrix A and a m2 × n2 matrix B we
define the product A × B as the (m1 + m2) × (n1n2) matrix
consisting of all n1n2 possible columns formed from placing a
column of A on top of a column of B . If A, B are simple, then
A × B is simple. (A, Griggs, Sali 97)





1 0 0
0 1 0
0 0 1



 ×





1 1 1
0 1 1
0 0 1



 =











1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1











Given p simple matrices A1,A2, . . . ,Ap, each of size m/p × m/p,
the p-fold product A1 × A2 × · · · × Ap is a simple matrix of size
m × (mp/pp) i.e. Θ(mp) columns.
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Definition Given an m1 × n1 matrix A and a m2 × n2 matrix B we
define the product A × B as the (m1 + m2) × (n1n2) matrix
consisting of all n1n2 possible columns formed from placing a
column of A on top of a column of B . If A, B are simple, then
A × B is simple. (A, Griggs, Sali 97)





1 0 0
0 1 0
0 0 1



 ×





1 1 1
0 1 1
0 0 1



 =











1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1











Given p simple matrices A1,A2, . . . ,Ap, each of size m/p × m/p,
the p-fold product A1 × A2 × · · · × Ap is a simple matrix of size
m × (mp/pp) i.e. Θ(mp) columns.
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Examples

[01] × [01] = K2

k
︷ ︸︸ ︷

[01] × [01] × · · · × [01] = Kk

I2 × I2 =







1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1






≈ C4

Im/2 × Im/2 is vertex-edge incidence matrix of Km/2,m/2
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The Conjecture

We conjecture that our product constructions with the three
building blocks {I , I c ,T} determine the asymptotically best
constructions.
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The Conjecture

We conjecture that our product constructions with the three
building blocks {I , I c ,T} determine the asymptotically best
constructions.

Definition Let x(F ) denote the largest p such that there is a
p-fold product which does not contain F as a configuration where
the p-fold product is A1 × A2 × · · · × Ap where each
Ai ∈ {Im/p , I c

m/p
,Tm/p}.

Conjecture (A, Sali 05) forb(m,F ) is Θ(mx(F )).
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The Conjecture

We conjecture that our product constructions with the three
building blocks {I , I c ,T} determine the asymptotically best
constructions.

Definition Let x(F ) denote the largest p such that there is a
p-fold product which does not contain F as a configuration where
the p-fold product is A1 × A2 × · · · × Ap where each
Ai ∈ {Im/p , I c

m/p
,Tm/p}.

Conjecture (A, Sali 05) forb(m,F ) is Θ(mx(F )).

The conjecture has been verified for k × ` F where k = 2 (A,
Griggs, Sali 97) and k = 3 (A, Sali 05) and l = 2 (A, Keevash 06)
and for k-rowed F with bounds Θ(mk−1) or Θ(mk) (A, Fleming
10) plus other cases.
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In order for a 4-rowed F to have forb(m,F ) be quadratic in m, the
associated simple matrix must have a quadratic bound. Using a
result of A and Fleming, there are three simple column-maximal
4-rowed F for which forb(m,F ) is quadratic. Here is one example:

F8 =







1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 1 1 1
0 0 1 1 0 0







How can we repeat columns in F8 and still have a quadratic bound?
We note that repeating either the column of sum 1 or the column
of sum 3 will result in a cubic lower bound. Thus we only consider
taking multiple copies of the columns of sum 2.
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In order for a 4-rowed F to have forb(m,F ) be quadratic in m, the
associated simple matrix must have a quadratic bound. Using a
result of A and Fleming, there are three simple column-maximal
4-rowed F for which forb(m,F ) is quadratic. Here is one example:

F8 =







1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 1 1 1
0 0 1 1 0 0







How can we repeat columns in F8 and still have a quadratic bound?
We note that repeating either the column of sum 1 or the column
of sum 3 will result in a cubic lower bound. Thus we only consider
taking multiple copies of the columns of sum 2. For a fixed t, let

F8(t) =







1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·







1 0
0 1
1 1
0 0













Richard Anstee UBC, Vancouver Forbidden Configurations: Progress on a Conjecture



F8(t) =







1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·







1 0
0 1
1 1
0 0













Theorem (A, Raggi, Sali 09) Let t be given. Then forb(m,F8(t))
is O(m2). Moreover F8(t) is a boundary case, namely for any
column α not already present t times in F8(t), then
forb(m, [F8(t)|α]) is Ω(m3).

The proof is currently a rather complicated induction with some
directed graph arguments. For each α there are Ω(m3) product
constructions avoiding [F8(t)|α].
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F8(t) =







1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·







1 0
0 1
1 1
0 0













Theorem (A, Raggi, Sali 09) Let t be given. Then forb(m,F8(t))
is O(m2). Moreover F8(t) is a boundary case, namely for any
column α not already present t times in F8(t), then
forb(m, [F8(t)|α]) is Ω(m3).

The proof is currently a rather complicated induction with some
directed graph arguments. For each α there are Ω(m3) product
constructions avoiding [F8(t)|α].
There are two other 4-rowed F to consider which should have
quadratic bounds. This would verify the conjecture for k = 4.

Richard Anstee UBC, Vancouver Forbidden Configurations: Progress on a Conjecture



Let

F (t) = t ·







1 0
1 0
0 1
0 1







=







1 · · · 1 0 · · · 0
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
0 · · · 0 1 · · · 1







Problem Let t be given. Show that forb(m,F (t)) is O(m2).
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Let

F (t) = t ·







1 0
1 0
0 1
0 1







=







1 · · · 1 0 · · · 0
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
0 · · · 0 1 · · · 1







Problem Let t be given. Show that forb(m,F (t)) is O(m2).

The above is true for both t = 1 and t = 2. The above problem
follows from the general conjecture. Solving this problem would no
doubt enable the proof of quadratic bounds for the two other
4-rowed F
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5 × 6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F which are
boundary cases, namely forb(m,F ) is O(m2) and for any column α
we have forb(m, [F |α]) being Ω(m3). Such F happen all to be
5 × 6 simple matrices and we have handled the following case.

F7 =









1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0









Theorem (A, Raggi, Sali) forb(m,F7) is O(m2).
The proof is currently a rather complicated induction.
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Induction

Let A be an m × forb(m,F7) simple matrix with no configuration
F7. We can select a row r and reorder rows and columns to obtain

A =
row r

[
0 · · · 0 1 · · · 1
Br Cr Cr Dr

]

.

Now [BrCrDr ] is an (m − 1)-rowed simple matrix with no
configuration F7. Also Cr is an (m − 1)-rowed simple matrix with
no configurations in F where F is derived from F7.
Then |A| = forb(m,F ) ≤ forb(m − 1,F ) + |Cr |.

To show |A| is quadratic it would suffice to show |Cr | is linear for
some choice of r .
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Repeated Induction

Let Cr be an (m − 1)-rowed simple matrix with no configuration in
F . We can select a row s and reorder rows and columns to obtain

Cr =
row s

[
0 · · · 0 1 · · · 1
Es Gs Gs Hs

]

.

To show |Cr | is linear it would suffice to show |Gs | is bounded by a
constant for some choice of s. Our proof shows that assuming
|Gs | > 8 for all choices s results in a contradiction.
This repeated induction is used to show that forb(m,F7) is O(m2).
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An unusual Bound

Theorem (A,Raggi,Sali) forb(m, {T2 × T2,T2 × I2, I2 × I2}) is
Θ(m3/2).

T2 × T2 =







1 1 1 1
0 0 1 1
1 1 1 1
0 1 0 1







, T2 × I2 =







1 1 1 1
0 0 1 1
1 0 1 0
0 1 0 1







,

I2 × I2 =







1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
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Induction

Let A be an m × forb(m,F) simple matrix with no configuration in
F . We can select a row r and reorder rows and columns to obtain

A =
row r

[
0 · · · 0 1 · · · 1
Br Cr Cr Dr

]

.

To show |A| is O(m3/2) it would suffice to show |Cr | is O(m1/2)
for some choice of r . Our proof shows that assuming
|Cr | > 16m1/2 for all choices r results in a contradiction.
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I2 =

[
1 0
0 1

]

, T2 =

[
1 1
0 1

]

Definition For an m-rowed matrix P , we define f (F ,P) =
max{|A| : A an m − rowed submatrix of P , no configuration F}.

For example, with Km denoting the m × 2m simple matrix, then
forb(m,F ) = f (F ,Km).
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I2 =

[
1 0
0 1

]

, T2 =

[
1 1
0 1

]

Definition For an m-rowed matrix P , we define f (F ,P) =
max{|A| : A an m − rowed submatrix of P , no configuration F}.

For example, with Km denoting the m × 2m simple matrix, then
forb(m,F ) = f (F ,Km).

Theorem (A,Raggi,Sali) f (T2 × T2,Tm/2 × Tm/2) is Θ(m).
Theorem (A,Raggi,Sali) f (I2 × T2, Im/2 × Tm/2) is Θ(m).

Theorem (A,Raggi,Sali) f (I2 × I2, Im/2 × Im/2) is Θ(m3/2).

The first result follows from the Marcus and Tardos (05) results on
forbidden patterns.
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]

, T2 =

[
1 1
0 1

]

Definition For an m-rowed matrix P , we define f (F ,P) =
max{|A| : A an m − rowed submatrix of P , no configuration F}.

For example, with Km denoting the m × 2m simple matrix, then
forb(m,F ) = f (F ,Km).

Theorem (A,Raggi,Sali) f (T2 × T2,Tm/2 × Tm/2) is Θ(m).
Theorem (A,Raggi,Sali) f (I2 × T2, Im/2 × Tm/2) is Θ(m).

Theorem (A,Raggi,Sali) f (I2 × I2, Im/2 × Im/2) is Θ(m3/2).

The first result follows from the Marcus and Tardos (05) results on
forbidden patterns. The second follows from a proof related to the
result of Marcus and Tardos.
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I2 =

[
1 0
0 1

]

, T2 =

[
1 1
0 1

]

Definition For an m-rowed matrix P , we define f (F ,P) =
max{|A| : A an m − rowed submatrix of P , no configuration F}.

For example, with Km denoting the m × 2m simple matrix, then
forb(m,F ) = f (F ,Km).

Theorem (A,Raggi,Sali) f (T2 × T2,Tm/2 × Tm/2) is Θ(m).
Theorem (A,Raggi,Sali) f (I2 × T2, Im/2 × Tm/2) is Θ(m).

Theorem (A,Raggi,Sali) f (I2 × I2, Im/2 × Im/2) is Θ(m3/2).

The first result follows from the Marcus and Tardos (05) results on
forbidden patterns. The second follows from a proof related to the
result of Marcus and Tardos. The third result is quite different
from the conjecture and relates to Kovari, Sos, Turan (54).
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The same proof techniques will show

Theorem f (Tk × Tk ,Tm/2 × Tm/2) is O(m)

Theorem f (I3 × T3, Im/2 × Tm/2) is O(m)
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The same proof techniques will show

Theorem f (Tk × Tk ,Tm/2 × Tm/2) is O(m)

Theorem f (I3 × T3, Im/2 × Tm/2) is O(m)

Problem Can you show f (I4 × T4, Im/2 × Tm/2) is O(m)?
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THANKS to the session organizers! Hope you have enjoyed
Vancouver.
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