Forbidden Configurations: Progress on a Conjecture

Richard Anstee
UBC, Vancouver

Joint work with Miguel Raggi, Attila Sali
CMS, Dec. 6, 2010
Vancouver, BC

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
\end{gathered}
$$

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{ll|l|lll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
\end{gathered}
$$

Definition We define $|A|$ to be the number of columns in A.

$$
|A|=6
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \in \quad A=
$$

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
\hline & & 0 & 0
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.

Definition Let

forb $(m, F)=\max \{|A|: A m$-rowed simple, no configuration $F\}$ Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains the configuration F.

Definition Given a matrix F, we say that A has F as a configuration if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \in A=
$$

$$
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
\cline { 2 - 5 } & & 0 & & 0
\end{array}\right]
$$

We consider the property of forbidding a configuration F in A for which we say F is a forbidden configuration in A.

Definition Let

forb $(m, F)=\max \{|A|: A m$-rowed simple, no configuration $F\}$ Thus if A is any $m \times($ forb $(m, F)+1)$ simple matrix then A contains the configuration F.
For example, \quad forb $\left(m,\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=m+1$.

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$
Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \notin I, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \notin I^{c}, \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \notin T
$$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Examples

$$
\begin{gathered}
{[01] \times[01]=K_{2}} \\
\overbrace{[01] \times[01] \times \cdots \times[01]}^{k}=K_{k} \\
I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \approx C_{4}
\end{gathered}
$$

$I_{m / 2} \times I_{m / 2}$ is vertex-edge incidence matrix of $K_{m / 2, m / 2}$

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.

The Conjecture

We conjecture that our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
The conjecture has been verified for $k \times \ell F$ where $k=2(\mathrm{~A}$, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $I=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ (A, Fleming 10) plus other cases.

In order for a 4-rowed F to have forb (m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

In order for a 4-rowed F to have forb (m, F) be quadratic in m, the associated simple matrix must have a quadratic bound. Using a result of A and Fleming, there are three simple column-maximal 4-rowed F for which forb (m, F) is quadratic. Here is one example:

$$
F_{8}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

How can we repeat columns in F_{8} and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A, Raggi, Sali 09) Let t be given. Then forb $\left(m, F_{8}(t)\right)$ is $O\left(m^{2}\right)$. Moreover $F_{8}(t)$ is a boundary case, namely for any column α not already present t times in $F_{8}(t)$, then forb $\left(m,\left[F_{8}(t) \mid \alpha\right]\right)$ is $\Omega\left(m^{3}\right)$.
The proof is currently a rather complicated induction with some directed graph arguments. For each α there are $\Omega\left(m^{3}\right)$ product constructions avoiding $\left[F_{8}(t) \mid \alpha\right]$.

$$
F_{8}(t)=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array} t \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A, Raggi, Sali 09) Let t be given. Then forb $\left(m, F_{8}(t)\right)$ is $O\left(m^{2}\right)$. Moreover $F_{8}(t)$ is a boundary case, namely for any column α not already present t times in $F_{8}(t)$, then forb $\left(m,\left[F_{8}(t) \mid \alpha\right]\right)$ is $\Omega\left(m^{3}\right)$.
The proof is currently a rather complicated induction with some directed graph arguments. For each α there are $\Omega\left(m^{3}\right)$ product constructions avoiding $\left[F_{8}(t) \mid \alpha\right]$.
There are two other 4-rowed F to consider which should have quadratic bounds. This would verify the conjecture for $k=4$.

Let

$$
F(t)=t \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{llllll}
1 & \cdots & 1 & 0 & \cdots & 0 \\
1 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 \\
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right]
$$

Problem Let t be given. Show that forb $(m, F(t))$ is $O\left(m^{2}\right)$.

Let

$$
F(t)=t \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{llllll}
1 & \cdots & 1 & 0 & \cdots & 0 \\
1 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 \\
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right]
$$

Problem Let t be given. Show that forb $(m, F(t))$ is $O\left(m^{2}\right)$.
The above is true for both $t=1$ and $t=2$. The above problem follows from the general conjecture. Solving this problem would no doubt enable the proof of quadratic bounds for the two other 4-rowed F

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5 -rowed simple matrices F which are boundary cases, namely forb (m, F) is $O\left(m^{2}\right)$ and for any column α we have forb $(m,[F \mid \alpha])$ being $\Omega\left(m^{3}\right)$. Such F happen all to be 5×6 simple matrices and we have handled the following case.

$$
F_{7}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Theorem (A, Raggi, Sali) forb $\left(m, F_{7}\right)$ is $O\left(m^{2}\right)$.
The proof is currently a rather complicated induction.

Induction

Let A be an $m \times$ forb $\left(m, F_{7}\right)$ simple matrix with no configuration F_{7}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now [$B_{r} C_{r} D_{r}$] is an $(m-1)$-rowed simple matrix with no configuration F_{7}. Also C_{r} is an $(m-1)$-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_{7}.
Then $|A|=$ forb $(m, F) \leq \operatorname{forb}(m-1, F)+\left|C_{r}\right|$.
To show $|A|$ is quadratic it would suffice to show $\left|C_{r}\right|$ is linear for some choice of r.

Repeated Induction

Let C_{r} be an $(m-1)$-rowed simple matrix with no configuration in \mathcal{F}. We can select a row s and reorder rows and columns to obtain

$$
C_{r}=\operatorname{row} s\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
E_{s} & & G_{s} & G_{s} & & H_{s}
\end{array}\right]
$$

To show $\left|C_{r}\right|$ is linear it would suffice to show $\left|G_{s}\right|$ is bounded by a constant for some choice of s. Our proof shows that assuming $\left|G_{s}\right|>8$ for all choices s results in a contradiction.
This repeated induction is used to show that forb $\left(m, F_{7}\right)$ is $O\left(m^{2}\right)$.

An unusual Bound

Theorem (A,Raggi,Sali) forb $\left(m,\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.

$$
\begin{gathered}
T_{2} \times T_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], T_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
I_{2} \times I_{2}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in \mathcal{F}. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

To show $|A|$ is $O\left(m^{3 / 2}\right)$ it would suffice to show $\left|C_{r}\right|$ is $O\left(m^{1 / 2}\right)$ for some choice of r. Our proof shows that assuming $\left|C_{r}\right|>16 m^{1 / 2}$ for all choices r results in a contradiction.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Definition For an m-rowed matrix P, we define $f(F, P)=$ $\max \{|A|: A$ an m - rowed submatrix of P, no configuration $F\}$. For example, with K_{m} denoting the $m \times 2^{m}$ simple matrix, then forb $(m, F)=f\left(F, K_{m}\right)$.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Definition For an m-rowed matrix P, we define $f(F, P)=$ $\max \{|A|: A$ an m - rowed submatrix of P, no configuration $F\}$. For example, with K_{m} denoting the $m \times 2^{m}$ simple matrix, then forb $(m, F)=f\left(F, K_{m}\right)$.
Theorem (A,Raggi,Sali) $f\left(T_{2} \times T_{2}, T_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$. Theorem (A,Raggi,Sali) $f\left(I_{2} \times T_{2}, I_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$.
Theorem (A,Raggi,Sali) $f\left(I_{2} \times I_{2}, I_{m / 2} \times I_{m / 2}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
The first result follows from the Marcus and Tardos (05) results on forbidden patterns.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Definition For an m-rowed matrix P, we define $f(F, P)=$ $\max \{|A|: A$ an m - rowed submatrix of P, no configuration $F\}$. For example, with K_{m} denoting the $m \times 2^{m}$ simple matrix, then forb $(m, F)=f\left(F, K_{m}\right)$.
Theorem (A,Raggi,Sali) $f\left(T_{2} \times T_{2}, T_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$. Theorem (A,Raggi,Sali) $f\left(I_{2} \times T_{2}, I_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$.
Theorem (A,Raggi,Sali) $f\left(I_{2} \times I_{2}, I_{m / 2} \times I_{m / 2}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
The first result follows from the Marcus and Tardos (05) results on forbidden patterns. The second follows from a proof related to the result of Marcus and Tardos.

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Definition For an m-rowed matrix P, we define $f(F, P)=$ $\max \{|A|: A$ an m - rowed submatrix of P, no configuration $F\}$. For example, with K_{m} denoting the $m \times 2^{m}$ simple matrix, then forb $(m, F)=f\left(F, K_{m}\right)$.
Theorem (A,Raggi,Sali) $f\left(T_{2} \times T_{2}, T_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$. Theorem (A,Raggi,Sali) $f\left(I_{2} \times T_{2}, I_{m / 2} \times T_{m / 2}\right)$ is $\Theta(m)$.
Theorem (A,Raggi,Sali) $f\left(I_{2} \times I_{2}, I_{m / 2} \times I_{m / 2}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
The first result follows from the Marcus and Tardos (05) results on forbidden patterns. The second follows from a proof related to the result of Marcus and Tardos. The third result is quite different from the conjecture and relates to Kovari, Sos, Turan (54).

The same proof techniques will show
Theorem $f\left(T_{k} \times T_{k}, T_{m / 2} \times T_{m / 2}\right)$ is $O(m)$
Theorem $f\left(I_{3} \times T_{3}, I_{m / 2} \times T_{m / 2}\right)$ is $O(m)$

The same proof techniques will show
Theorem $f\left(T_{k} \times T_{k}, T_{m / 2} \times T_{m / 2}\right)$ is $O(m)$
Theorem $f\left(I_{3} \times T_{3}, I_{m / 2} \times T_{m / 2}\right)$ is $O(m)$
Problem Can you show $f\left(I_{4} \times T_{4}, I_{m / 2} \times T_{m / 2}\right)$ is $O(m)$?

THANKS to the session organizers! Hope you have enjoyed Vancouver.

