Forbidden Configurations: Boundary Cases

> Richard Anstee, UBC, Vancouver

Joint work with Connor Meehan, Miguel Raggi, Attila Sali Eurocomb 11, September 1, 2011 Budapest

向下 イヨト イヨト

Consider the following family of subsets of $\{1, 2, 3, 4\}$: $\mathcal{A} = \{\emptyset, \{1, 2, 4\}, \{1, 4\}, \{1, 2\}, \{1, 2, 3\}, \{1, 3\}\}$ The incidence matrix A of the family \mathcal{A} of subsets of $\{1, 2, 3, 4\}$ is:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Definition We say that a matrix A is *simple* if it is a (0,1)-matrix with no repeated columns.

Definition We define ||A|| to be the number of columns in *A*. ||A|| = 6 = |A|

▲□→ ▲注→ ▲注→

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

-

æ

Definition Given a matrix F, we say that A has F as a *configuration* if there is a submatrix of A which is a row and column permutation of F.

$$F = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \in A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

We consider the property of forbidding a configuration F in A. **Definition** Let $forb(m, F) = max\{||A|| : A m$ -rowed simple, no configuration $F\}$

・吊り イヨト イヨト ニヨ

The building blocks of our product constructions are I, I^c and T, e.g:

$$I_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, I_{4}^{c} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, T_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

回 と く ヨ と く ヨ と

æ

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

æ

Definition Given two matrices A, B, we define the product $A \times B$ as the matrix whose columns are obtained by placing a column of A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

Given p simple matrices A_1, A_2, \ldots, A_p , each of size $m/p \times m/p$, the p-fold product $A_1 \times A_2 \times \cdots \times A_p$ is a simple matrix of size $m \times (m/p)^p$ i.e. $\Theta(m^p)$ columns.

向下 イヨト イヨト

 $I_{m/2} imes I_{m/2}$ is vertex-edge incidence matrix of $K_{m/2,m/2}$

▲御▶ ▲注≯ ▲注≯ 三注

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{x(F)})$.

向下 イヨト イヨト

We conjecture that our product constructions with the three building blocks $\{I, I^c, T\}$ determine the asymptotically best constructions.

Definition Let *F* be given. Let x(F) denote the largest *p* such that there is a *p*-fold product which does not contain *F* as a configuration where the *p*-fold product is $A_1 \times A_2 \times \cdots \times A_p$ where each $A_i \in \{I_{m/p}, I_{m/p}^c, T_{m/p}\}$.

Conjecture (A, Sali 05) *forb*(m, F) *is* $\Theta(m^{\times(F)})$.

The conjecture has been verified for $k \times \ell F$ where k = 2 (A, Griggs, Sali 97) and k = 3 (A, Sali 05) and $\ell = 2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta(m^{k-1})$ or $\Theta(m^k)$ (A, Fleming 10) plus other cases.

イロト イポト イヨト イヨト

Definition Let *F* be a *k*-rowed configuration and let α be a *k*-rowed column vector. Define $[F|\alpha]$ to be the concatenation of *F* and α .

Definition Let F be a k-rowed configuration. We say that F is a boundary case if for every k-rowed column α which is either not present in F

```
or
present just once in F,
then forb(m, [F|\alpha]) is \Omega(m \cdot forb(m, F)).
```

ヨット イヨット イヨッ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2)$$
Construction: $I_{m/2}^c \times I_{m/2}^c$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2$$
Construction: $I_{m/2}^c \times I_{m/2}^c$

)

▲圖▶ ★ 国▶ ★ 国▶

æ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2)$$
Construction: $I_{m/2}^c \times I_{m/2}^c$ avoiding
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2)$$

Construction: $I_{m/2} \times I_{m/2}$.

回 と く ヨ と く ヨ と

3

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2)$$
Construction: $I_{m/2} \times I_{m/2}$ avoiding $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$
$$[F|\alpha] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, [F|\alpha]) \text{ is } \Omega(m^2)$$

Construction: $I_{m/2} \times I_{m/2}$.

回 と く ヨ と く ヨ と

3

$$F = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad forb(m, F) = 2m$$

Thus *F* is a boundary case.

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Using a result of A and Fleming 10, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2.

高 とう ヨン うまと

Using a result of A and Fleming 10, there are three simple column-maximal 4-rowed F for which forb(m, F) is quadratic. Here is one example:

$$F_8 = \left[\begin{array}{rrrrr} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{array} \right]$$

How can we repeat columns in F_8 and still have a quadratic bound? We note that repeating either the column of sum 1 or the column of sum 3 will result in a cubic lower bound. Thus we only consider taking multiple copies of the columns of sum 2. For a fixed t, let

$$F_{8}(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

高 とう ヨン うまと

$$F_8(t) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Theorem (A, Raggi, Sali 09) Let t be given. Then $forb(m, F_8(t))$ is $\Theta(m^2)$. Moreover $F_8(t)$ is a boundary case, namely for any column α not already present t times in $F_8(t)$, then $forb(m, [F_8(t)|\alpha])$ is $\Omega(m^3)$.

The proof of the upper bound is currently a rather complicated induction with some directed graph arguments.

(4) (2) (4) (2) (4)

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F to be boundary cases, namely forb(m, F) is predicted to be $\Theta(m^2)$ and for any column α we have $forb(m, [F|\alpha])$ being $\Omega(m^3)$. We have handled the following case.

$$F_7 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Theorem (A, Raggi, Sali) $forb(m, F_7)$ is $\Theta(m^2)$. Moreover F_7 is a boundary case, namely for any column α , then $forb(m, [F_7|\alpha])$ is $\Omega(m^3)$.

(日本) (日本) (日本)

5×6 Simple Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F to be boundary cases, namely forb(m, F) is predicted to be $\Theta(m^2)$ and for any column α we have $forb(m, [F|\alpha])$ being $\Omega(m^3)$. We have handled the following case.

$$F_7 = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Theorem (A, Raggi, Sali) forb (m, F_7) is $\Theta(m^2)$. Moreover F_7 is a boundary case, namely for any column α , then forb $(m, [F_7|\alpha])$ is $\Omega(m^3)$. The proof is currently a rather complicated induction.

• E •

All 6-rowed Configurations with Quadratic Bounds

$$G_{6\times3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Theorem (A,Raggi,Sali) forb $(m, G_{6\times3})$ is $\Theta(m^2)$. Moreover $G_{6\times3}$ is a boundary case, namely for any column α , then forb $(m, [G_{6\times3}|\alpha])$ is $\Omega(m^3)$. In fact if F is not a configuration in $G_{6\times3}$, then forb(m, F) is $\Omega(m^3)$.

Proof: We use induction and the bound for F_7 .

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that $forb(m, \{I_k, I_k^c, T_k\}) = c_k$.

白 と く ヨ と く ヨ と

3

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that forb $(m, \{I_k, I_k^c, T_k\}) = c_k$.

Theorem (A. and Meehan 11) Let p, k be given with $p \ge 3k$. Let $F = [\mathbf{0}_k | I_k] \times [\mathbf{0}_k | T_k] \times [I_k^c | \mathbf{1}_k] \times K_{p-3k}$. Then forb(m, F) is $\Theta(m^{p-k})$.

向下 イヨト イヨト

3

Theorem (Balogh and Bollabás 05) Given k, there exists a constant c_k so that forb $(m, \{I_k, I_k^c, T_k\}) = c_k$.

Theorem (A. and Meehan 11) Let p, k be given with $p \ge 3k$. Let $F = [\mathbf{0}_k | I_k] \times [\mathbf{0}_k | T_k] \times [I_k^c | \mathbf{1}_k] \times K_{p-3k}$. Then forb(m, F) is $\Theta(m^{p-k})$. Moreover F is column maximal (a weak form of a boundary case), namely for any column α not in F we have that forb $(m, [F|\alpha])$ is $\Omega(m^{p-k+1})$.

向下 イヨト イヨト

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

回 と く ヨ と く ヨ と

æ

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 .

向下 イヨト イヨト

 C_r has no F in

$$\mathcal{F} = \left\{ \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \right\}$$

$$A = \begin{array}{cccc} \operatorname{row} r & \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 .

向下 イヨト イヨト

$$A = \begin{array}{ccccc} \operatorname{row} r & \left[\begin{array}{ccccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 . Then

 $||A|| = forb(m, F_7) = ||B_r C_r D_r|| + ||C_r|| \le forb(m - 1, F_7) + ||C_r||.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$A = \begin{array}{ccccc} \operatorname{row} r & \left[\begin{array}{ccccc} 0 & \cdots & 0 & 1 & \cdots & 1 \\ B_r & & C_r & C_r & & D_r \end{array} \right].$$

Now $[B_r C_r D_r]$ is an (m-1)-rowed simple matrix with no configuration F_7 . Also C_r is an (m-1)-rowed simple matrix with no configurations in \mathcal{F} where \mathcal{F} is derived from F_7 . Then

 $||A|| = forb(m, F_7) = ||B_r C_r D_r|| + ||C_r|| \le forb(m - 1, F_7) + ||C_r||.$ To show *forb*(*m*, *F*₇) is quadratic it would suffice to show $||C_r||$ is linear for some choice of *r*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let C_r be an (m-1)-rowed simple matrix with no configuration in \mathcal{F} . We can select a row s_i and reorder rows and columns to obtain

$$C_r = \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & & G_i & G_i & & H_i \end{bmatrix}.$$

To show $||C_r||$ is linear it would suffice to show $||G_i||$ is bounded by a constant for some choice of s_i . Our proof shows that assuming $||G_i|| \ge 8$ for all choices s_i results in a contradiction.

ヨット イヨット イヨッ

Let C_r be an (m-1)-rowed simple matrix with no configuration in \mathcal{F} . We can select a row s_i and reorder rows and columns to obtain

$$C_r = \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & & G_i & G_i & & H_i \end{bmatrix}.$$

To show $||C_r||$ is linear it would suffice to show $||G_i||$ is bounded by a constant for some choice of s_i . Our proof shows that assuming $||G_i|| \ge 8$ for all choices s_i results in a contradiction.

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple.

向下 イヨト イヨト

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$.

回 と く ヨ と く ヨ と

3

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline & \operatorname{columns} \subseteq [\mathbf{0}|I] \end{array} \end{bmatrix} L_i$$

•

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline columns \subseteq [\mathbf{1}|I^c] \end{bmatrix} \} L_i$$

•

(本間) (本語) (本語) (語)

Idea: Select a minimal set of rows L_i so that $G_i|_{L_i}$ is simple. We first discover $G_i|_{L_i} = [\mathbf{0}|I]$ or $[\mathbf{1}|I^c]$ or $[\mathbf{0}|T]$. Then we discover:

$$C_r = \begin{array}{c} \operatorname{row} s_i \begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 1 \\ E_i & G_i & G_i & H_i \\ \hline columns \subseteq [0|T] \end{array} \end{bmatrix} L_i$$

•

(本間) (本語) (本語) (語)

```
We may choose s_1 and form L_1.
Then choose s_2 \in L_1 and form L_2.
Then choose s_3 \in L_2 and form L_3.
etc.
We can show the sets L_1 \setminus s_2, L_2 \setminus s_3, L_3 \setminus s_4, \ldots are disjoint.
Assuming ||G_i|| \ge 8 for all choices s_i results in |L_i \setminus s_{i+1}| \ge 3 which yields a contradiction.
```

ヨット イヨット イヨッ

THANKS to the organizers, particularly Sali Attila!

白 ト イヨト イヨト

æ