Forbidden Families of Configurations

Richard Anstee, UBC, Vancouver

Joint work with Christina Koch University of South Carolina
Feb 21, 2013

Introduction

I have worked with a number of coauthors in this area: Farzin Barekat, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash, Christina Koch, Connor Meehan, U.S.R. Murty, Miguel Raggi and Attila Sali but there are works of other authors (some much older, some recent) impinging on this problem as well. For example, the definition of VC-dimension uses a forbidden configuration. A survey article is now available at the Electronic Journal of Combinatorics, Dynamic Survey 20.

Christina Koch

Consider the following family of subsets of $\{1,2,3,4\}$:

$$
\mathcal{A}=\{\emptyset,\{1,2,4\},\{1,4\},\{1,2\},\{1,2,3\},\{1,3\}\}
$$

The incidence matrix A of the family \mathcal{A} of subsets of $\{1,2,3,4\}$ is:

$$
A=\left[\begin{array}{ll|llll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
Definition We define $\|A\|$ to be the number of columns in A.

$$
\|A\|=6=|\mathcal{A}|
$$

Definition Given a matrix F, we say that A has F as a configuration (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \prec \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definition Given a matrix F, we say that A has F as a configuration (denoted $F \prec A$) if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \quad \prec \quad A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Definitions

$\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$
Avoid $(m, \mathcal{F})=\{A: A$-rowed simple, $F \nprec A$ for all $F \in \mathcal{F}\}$ forb $(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}$

Some Main Results

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\text { forb }\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0} \text { which is } \Theta\left(m^{k-1}\right) .
$$

Some Main Results

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
When a matrix A has a copy of K_{k} on some k-set of rows S, then we say that A shatters S. The results of Vapnik and Chervonenkis were for application in Applied Probability, in Learning Theory. One defines A to have VC-dimension k if k is the maximum cardinality of a shattered set in A. There are further applications; the last CanaDAM and the last SIAM Conference on Discrete Mathematics had plenary talks containing applications.

Main Bounds

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.

Main Bounds

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)
forb $\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}$ which is $\Theta\left(m^{k-1}\right)$.
Corollary Let F be a $k \times \ell$ simple matrix. Then forb $(m, F)=O\left(m^{k-1}\right)$.
Theorem (Füredi 83). Let F be a $k \times \ell$ matrix. Then forb $(m, F)=O\left(m^{k}\right)$.
Problem Given F, can we predict the behaviour of forb (m, F) ?

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } \quad C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } \quad C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)$ are called Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$

Let C_{k} denote the $k \times k$ vertex-edge incidence matrix of the cycle of length k.

$$
\text { e.g. } C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] .
$$

Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)$ are called Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{5}, C_{7}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$
Matrices in $\operatorname{Avoid}\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)$ are called Totally Balanced Matrices.
Theorem forb $\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=$ forb $\left(m, C_{3}\right)$

The inequality forb $\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right) \leq \operatorname{forb}\left(m, C_{3}\right)$ is quite easy.

Lemma If $\mathcal{F}^{\prime} \subset \mathcal{F}$ then forb $(m, \mathcal{F}) \leq$ forb $\left(m, \mathcal{F}^{\prime}\right)$.
Obviously the potential difficulty in obtaining equality is a construction but in my Ph.D. thesis I had shown that any $m \times$ forb $\left(m, C_{3}\right)$ simple matrix is in fact totally balanced. Thus we have forb $\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=\operatorname{forb}\left(m, C_{3}\right)$.

A Product Construction

The building blocks of our product constructions are I, I^{c} and T :

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad I_{4}^{c}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad T_{4}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

Definition Given an $m_{1} \times n_{1}$ matrix A and a $m_{2} \times n_{2}$ matrix B we define the product $A \times B$ as the $\left(m_{1}+m_{2}\right) \times\left(n_{1} n_{2}\right)$ matrix consisting of all $n_{1} n_{2}$ possible columns formed from placing a column of A on top of a column of B. If A, B are simple, then $A \times B$ is simple. (A, Griggs, Sali 97)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Given p simple matrices $A_{1}, A_{2}, \ldots, A_{p}$, each of size $m / p \times m / p$, the p-fold product $A_{1} \times A_{2} \times \cdots \times A_{p}$ is a simple matrix of size $m \times\left(m^{p} / p^{p}\right)$ i.e. $\Theta\left(m^{p}\right)$ columns.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.

The Conjecture

Definition Let $x(F)$ denote the largest p such that there is a p-fold product which does not contain F as a configuration where the p-fold product is $A_{1} \times A_{2} \times \cdots \times A_{p}$ where each
$A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.
Conjecture (A, Sali 05) forb (m, F) is $\Theta\left(m^{\times(F)}\right)$.
In other words, we predict our product constructions with the three building blocks $\left\{I, I^{c}, T\right\}$ determine the asymptotically best constructions.
The conjecture has been verified for $k \times \ell F$ where $k=2(\mathrm{~A}$, Griggs, Sali 97) and $k=3$ (A, Sali 05) and $\ell=2$ (A, Keevash 06) and for k-rowed F with bounds $\Theta\left(m^{k-1}\right)$ or $\Theta\left(m^{k}\right)$ plus other cases.

Forbidden Families can fail Conjecture

Definition ex (m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.
$A \in \operatorname{Avoid}\left(m, \mathbf{1}_{3}\right)$ will be a matrix with up to $m+1$ columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.
Assume $p=|V(H)|$ and $q=|E(H)|$. Let $I(H)$ denote the $p \times q$ vertex-edge incidence matrix associated with H.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, I(H)\right\}\right)=m+1+\operatorname{ex}(m, H)$.
In this talk $I\left(C_{4}\right)=C_{4}$. (Also $C_{4}=I_{2} \times I_{2}$)

Forbidden Families can fail Conjecture

Definition ex (m, H) is the maximum number of edges in a (simple) graph G on m vertices that has no subgraph H.
$A \in \operatorname{Avoid}\left(m, \mathbf{1}_{3}\right)$ will be a matrix with up to $m+1$ columns of sum 0 or sum 1 plus columns of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.
Assume $p=|V(H)|$ and $q=|E(H)|$. Let $I(H)$ denote the $p \times q$ vertex-edge incidence matrix associated with H.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, I(H)\right\}\right)=m+1+\operatorname{ex}(m, H)$.
In this talk $I\left(C_{4}\right)=C_{4}$. (Also $C_{4}=I_{2} \times I_{2}$)
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, C_{4}\right\}\right)=m+1+\operatorname{ex}\left(m, C_{4}\right)$ which is $\Theta\left(m^{3 / 2}\right)$.
Theorem forb $\left(m,\left\{\mathbf{1}_{3}, C_{6}\right\}\right)=m+1+\operatorname{ex}\left(m, C_{6}\right)$ which is $\Theta\left(m^{4 / 3}\right)$.

Forbidden Families can pass Conjecture

Theorem (Balogh and Bollobás) Let k be given. Then there is a constant c_{k} so that forb $\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.

We note that there is no obvious product construction.
Note that $c_{k} \geq\binom{ 2 k-2}{k-1}$ by taking all columns of column sum at most $k-1$ that arise from the $k-1$-fold product
$T_{k-1} \times T_{k-1} \times \cdots \times T_{k-1}$.

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$.
Lemma Let \mathcal{F} and \mathcal{G} have the property that for every G_{i}, there is some F_{j} with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq$ forb (m, \mathcal{G}).

Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$.
Lemma Let \mathcal{F} and \mathcal{G} have the property that for every G_{i}, there is some F_{j} with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq$ forb (m, \mathcal{G}).
Theorem Let \mathcal{F} be given. Then either there is a constant c with forb $(m, \mathcal{F})=c$ or forb (m, \mathcal{F}) is $\Omega(m)$.
Proof: We start using $\mathcal{G}=\left\{I_{p}, I_{p}^{c}, T_{p}\right\}$ with p suitably large.
Either we have the property that there is some $F_{r} \prec I_{p}$, and some $F_{s} \prec I_{p}^{c}$ and some $F_{t} \prec T_{p}$ in which case
forb $(m, \mathcal{F}) \leq \operatorname{forb}\left(m,\left\{I_{p}, I_{p}^{c}, T_{p}\right\}\right)=O(1)$
or
without loss of generality we have $F_{j} \nprec I_{p}$ for all j and hence $I_{m} \in \operatorname{Avoid}(m, \mathcal{F})$ and so forb (m, \mathcal{F}) is $\Omega(m)$.

A pair of Configurations with quadratic bounds

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]} \\
& I_{3}^{c} \\
& \text { e.g. } F_{2}(1,2,2,1)=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \notin I \times I^{c} .
\end{aligned}
$$

A pair of Configurations with quadratic bounds

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

e.g. $F_{2}(1,2,2,1)=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right] \notin I \times I^{c}$.
$I_{m / 2} \times I_{m / 2}^{c}$ is an $m \times m^{2} / 4$ simple matrix avoiding $F_{2}(1,2,2,1)$, so forb $\left(m, F_{2}(1,2,2,1)\right)$ is $\Omega\left(m^{2}\right)$.
(A, Ferguson, Sali 01 forb $\left.\left(m, F_{2}(1,2,2,1)\right)=\left\lfloor\frac{m^{2}}{4}\right\rfloor+\binom{m}{1}+\binom{m}{0}\right)$

A pair of Configurations with quadratic bounds

$$
\begin{aligned}
& \text { e.g. } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \notin T \times T . \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

A pair of Configurations with quadratic bounds

$$
\begin{aligned}
& \text { e.g. } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \notin T \times T . \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

$T_{m / 2} \times T_{m / 2}$ is an $m \times m^{2} / 4$ simple matrix avoiding l_{3}, so forb $\left(m, l_{3}\right)$ is $\Omega\left(m^{2}\right)$.
$\left(\right.$ forb $\left.\left(m, l_{3}\right)=\binom{m}{2}+\binom{m}{1}+\binom{m}{0}\right)$

By considering the construction $I \times I^{c}$ that avoids $F_{2}(1,2,2,1)$ and the construction $T \times T$ that avoids I_{3}, we note that we have only linear obvious constructions that avoid both $F_{2}(1,2,2,1)$ and l_{3}. We are led to the following:
Theorem forb $\left(m,\left\{l_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.
More is true:
Theorem forb $\left(m,\left\{2 \cdot I_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.

By considering the construction $I \times I^{c}$ that avoids $F_{2}(1,2,2,1)$ and the construction $T \times T$ that avoids I_{3}, we note that we have only linear obvious constructions that avoid both $F_{2}(1,2,2,1)$ and 1_{3}. We are led to the following:
Theorem forb $\left(m,\left\{l_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.
More is true:
Theorem forb $\left(m,\left\{2 \cdot I_{3}, F_{2}(1,2,2,1)\right\}\right)$ is $\Theta(m)$.
We are unable to extend this to the following although it seems to be true.
Conjecture forb $\left(m,\left\{t \cdot l_{3}, F_{2}(1, t, t, 1)\right\}\right)$ is $\Theta(m)$.

This idea was shown to hold for all pairs of the minimal quadratically bounded configurations.

Standard Induction

Let $A \in \operatorname{Avoid}(m, \mathcal{F})$. Decompose A as follows by deleting row r and collecting any repeated columns in C_{r} :

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Now $\left[B_{r} C_{r} D_{r}\right] \in \operatorname{Avoid}(m-1, \mathcal{F})$ and so
$\left\|\left[B_{r} C_{r} D_{r}\right]\right\| \leq \operatorname{forb}(m-1, \mathcal{F})$. Also $C_{r} \in \operatorname{Avoid}\left(m-1, \mathcal{F}^{\prime}\right)$ where \mathcal{F}^{\prime} is the (minimal) set of configurations F^{\prime} such that there is a configuration $F \in \mathcal{F}$ with $F \prec F^{\prime} \times\left[\begin{array}{ll}0 & 1\end{array}\right]$.
We are ready for induction using $\operatorname{forb}(m, \mathcal{F}) \leq \operatorname{forb}(m-1, \mathcal{F})+\operatorname{forb}\left(m-1, \mathcal{F}^{\prime}\right)$

Balogh Bollobás extended

Using our very standard induction one can prove the following. Theorem Let k be given. Then forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$.
Proof: We apply the standard induction noting that
$C_{r} \in \operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right.$ and so $\left\|C_{r}\right\|$ is $O(1)$ and so by induction forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$. We note that $I_{m} \in \operatorname{Avoid}\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$.

Balogh Bollobás extended

Using our very standard induction one can prove the following. Theorem Let k be given. Then forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$.
Proof: We apply the standard induction noting that
$C_{r} \in \operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right.$ and so $\left\|C_{r}\right\|$ is $O(1)$ and so by induction forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$. We note that $I_{m} \in \operatorname{Avoid}\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$.
Conjecture Let k, t be given. Then forb $\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}^{c}, t \cdot T_{k}\right\}\right)$ is $\Theta(m)$.

Balogh Bollobás extended

Using our very standard induction one can prove the following. Theorem Let k be given. Then forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$.
Proof: We apply the standard induction noting that
$C_{r} \in \operatorname{Avoid}\left(m,\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right.$ and so $\left\|C_{r}\right\|$ is $O(1)$ and so by induction forb $\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$ is $\Theta(m)$. We note that $I_{m} \in \operatorname{Avoid}\left(m,\left\{2 \cdot I_{k}, 2 \cdot I_{k}^{c}, 2 \cdot T_{k}\right\}\right)$.
Conjecture Let k, t be given. Then forb $\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}^{c}, t \cdot T_{k}\right\}\right)$ is $\Theta(m)$.
Theorem forb $\left(m,\left\{t \cdot I_{k}, t \cdot I_{k}{ }^{c}, t \cdot T_{k}\right\}\right)$ is $\Theta(m)$ for $k=3,4$.

Balogh Bollobás extended

Theorem (A, Meehan 12) Let $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$ be a family of p-rowed simple matrices with $p \geq k$ such that columns of $\left.F_{1}\right|_{\{1,2, \ldots, k\}}$ are contained in $\left[\mathbf{0}_{k} I_{k}\right]$, such that columns of $\left.F_{2}\right|_{\{1,2, \ldots, k\}}$ are contained in $\left[\mathbf{1}_{k} I_{k}^{c}\right]$ and such that columns of $\left.F_{3}\right|_{\{1,2, \ldots, k\}}$ are contained in $\left[\mathbf{0}_{k} T_{k}\right]$. Then forb (m, \mathcal{F}) is $O\left(m^{p-k}\right)$.

An unusual Bound

Theorem (A,Koch,Raggi,Sali 12) forb ($m,\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}$) is $\Theta\left(m^{3 / 2}\right)$.

$$
T_{2} \times T_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right], I_{2} \times I_{2}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

We showed initially that forb $\left(m,\left\{T_{2} \times T_{2}, T_{2} \times I_{2}, I_{2} \times I_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$ but Christina Koch realized that we ought to be able to drop $T_{2} \times I_{2}$ and we were able to redo the proof (which simplified slightly!).

Miguel Raggi, Attila Sali

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right]
$$

Induction

Let A be an $m \times \operatorname{forb}(m, \mathcal{F})$ simple matrix with no configuration in $\mathcal{F}=\left\{T_{2} \times T_{2}, I_{2} \times I_{2}\right\}$. We can select a row r and reorder rows and columns to obtain

$$
A=\text { row } r\left[\begin{array}{cccccc}
0 & \cdots & 0 & 1 & \cdots & 1 \\
B_{r} & & C_{r} & C_{r} & & D_{r}
\end{array}\right] .
$$

To show $\|A\|$ is $O\left(m^{3 / 2}\right)$ it would suffice to show $\left\|C_{r}\right\|$ is $O\left(m^{1 / 2}\right)$ for some choice of r. Our proof shows that assuming $\left\|C_{r}\right\|>20 m^{1 / 2}$ for all choices r results in a contradiction. In particular, associated with C_{r} is a set of rows $S(r)$ with $S(r) \geq 5 m^{1 / 2}$. We let $S(r)=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$. After some work we show that $\left|S\left(r_{i}\right) \cap S\left(r_{j}\right)\right| \leq 5$. Then we have $\left|S\left(r_{1}\right) \cup S\left(r_{2}\right) \cup S\left(r_{3}\right) \cup \cdots\right|$
$=\left|S\left(r_{1}\right)\right|+\left|S\left(r_{2}\right) \backslash S\left(r_{1}\right)\right|+\left|S\left(r_{3}\right) \backslash\left(S\left(r_{1}\right) \cup S\left(r_{2}\right)\right)\right|+\cdots$
$=5 m^{1 / 2}+\left(5 m^{1 / 2}-5\right)+\left(5 m^{1 / 2}-10\right)+\cdots>m!!!$

