The Inverse Trigonometric Functions

These notes amplify on the book's treatment of inverse trigonometric functions and supply some needed practice problems. Please see pages 543544 for the graphs of $\sin ^{-1} x, \cos ^{-1} x$, and $\tan ^{-1} x$.

1 The Arcsine Function

My sine is x; who am I? If x is any real number such that $|x| \leq 1$, there are infinitely many possible answers. For example, let $x=1 / 2$. Then $\sin y=x$ when $y=\pi / 6,5 \pi / 6,-7 \pi / 6,-11 \pi / 6,13 \pi / 6,17 \pi / 6,-19 \pi / 6$, and so on.

Note however that as y travels from $-\pi / 2$ to $\pi / 2, \sin y$ travels from -1 to 1. Since $\sin y$ is continuous and increasing in the interval $-\pi / 2 \leq y \leq \pi / 2$, it follows that for any x between -1 and 1 there is exactly one y between $-\pi / 2$ and $\pi / 2$ such that $\sin y=x$. We can therefore define a new function $\sin ^{-1}$ as follows:

Definition 1. If $-1 \leq x \leq 1$, then $\sin ^{-1} x$ (also known as $\arcsin x$) is the number between $-\pi / 2$ and $\pi / 2$ whose sine is equal to x.

Comment. If the function f has an inverse, that inverse is generally denoted by f^{-1}. The notation $\sin ^{-1} x$ that has just been introduced is (more or less) in accord with this general convention. Not quite! The sine function does not have an inverse, since given $\sin t$ it is not possible to recover t uniquely.

Maybe we are being too fussy. But the notation can also be a source of confusion. For note that $\sin ^{2} x$ is a standard abbreviation for $(\sin x)^{2}$, and $\sin ^{3} x$ is a standard abbreviation for $(\sin x)^{3}$. So should $\sin ^{-1} x$ mean $(\sin x)^{-1}$? Maybe it should. But it doesn't!

The notation $\arcsin x$ is preferred by many mathematicians. Unfortunately, $\sin ^{-1}$ seems to be gaining ground over arcsin, maybe because it fits the cramped space on calculator keyboards better. There are several other notations, including "Arc sin," and "asin."

Pronunciations vary: $\sin ^{-1} x$ can be pronounced "sine inverse (of) x, " "inverse sine (of) x," or even "arc sine x."

Comment. You don't have to know a lot about geography to know the capital of the country whose capital is Amman. And you don't have to know much about trigonometry to find $\sin \left(\sin ^{-1}(0.123)\right)$. Indeed it is clear that

$$
\sin \left(\sin ^{-1} x\right)=x \quad \text { for all } x \text { between }-1 \text { and } 1
$$

The behaviour of $\sin ^{-1}(\sin x)$ is more complicated. Let x be any number in the interval $[-\pi / 2, \pi / 2]$. Then the number between $-\pi / 2$ and $\pi / 2$ whose sine is $\sin x$ is clearly x.

But suppose for example that $\pi / 2 \leq x \leq 3 \pi / 2$. Since the sine function is symmetrical about the line $x=\pi / 2$, we have $\sin x=\sin (\pi-x)$. And since $\pi-x$ lies between $-\pi / 2$ and $\pi / 2$,

$$
\sin ^{-1}(\sin x)=\sin ^{-1}(\sin (\pi-x))=\pi-x .
$$

2 Differentiating the Arcsine Function

Let $y=\sin ^{-1} x$. Then for all x in the interval $[-1,1]$

$$
\sin y=x
$$

Assume that y is differentiable at all x in $(-1,1)$-it really is, but we omit the proof. If we differentiate both sides of the equation above with respect to x, then the Chain Rule gives

$$
(\cos y) \frac{d y}{d x}=1
$$

Thus if $\cos y \neq 0$ then

$$
\frac{d y}{d x}=\frac{1}{\cos y}=\frac{1}{\cos \left(\sin ^{-1} x\right)} .
$$

The above formula is correct but unattractive. To improve it, recall the familiar identity

$$
\cos ^{2} y+\sin ^{2} y=1
$$

Since $y=\sin ^{-1} x$, we have

$$
\cos ^{2} y=1-(\sin y)^{2}=1-\left(\sin \left(\sin ^{-1} x\right)\right)^{2}=1-x^{2}
$$

But y lies in the interval $(-\pi / 2, \pi / 2)$, and therefore $\cos y$ is positive. It follows that $\cos y=\sqrt{1-x^{2}}$ and therefore

$$
\begin{equation*}
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \tag{1}
\end{equation*}
$$

3 The Arctangent Function

The tangent function is continuous and increasing on the interval ($-\pi / 2, \pi / 2$). Moreover, as t approaches $-\pi / 2$ from the right, $\tan t$ becomes arbitrarily large negative, while as t approaches $\pi / 2$ from the left, $\tan t$ becomes arbitrarily large positive. It follows that as t ranges over $(-\pi / 2, \pi / 2), \tan t$ takes on every real value exactly once.

Thus the tangent function, restricted to the interval $(-\pi / 2, \pi / 2)$, has an inverse. We can therefore define a new function $\tan ^{-1}$ as follows:
Definition 2. For any real number $x, \tan ^{-1} x$ (also known as $\arctan x$) is the number between $-\pi / 2$ and $\pi / 2$ whose tangent is equal to x.

4 Differentiating the Arctangent Function

Let $y=\tan ^{-1} x$. Then for all x

$$
\tan y=x .
$$

Assume that y is differentiable for all x-it really is, but we omit the proof. If we differentiate both sides of the above equation with respect to x, we obtain

$$
\left(\sec ^{2} y\right) \frac{d y}{d x}=1
$$

It follows that

$$
\frac{d y}{d x}=\frac{1}{\sec ^{2} y}=\frac{1}{\sec ^{2}\left(\tan ^{-1} x\right)}
$$

To make the above formula more attractive, recall the identity $1+\tan ^{2} y=$ $\sec ^{2} y$. If you do not recall it, you can quickly derive it by dividing both sides of the identity $\cos ^{2} y+\sin ^{2} y=1$ by $\cos ^{2} y$.

Since $y=\tan ^{-1} x$, we have

$$
\sec ^{2} y=1+(\tan y)^{2}=1+\left(\tan \left(\tan ^{-1} x\right)\right)^{2}=1+x^{2}
$$

and therefore we can rewrite the formula for the derivative of $\tan ^{-1} x$ as

$$
\begin{equation*}
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{d y}{d x}=\frac{1}{1+x^{2}} \tag{2}
\end{equation*}
$$

5 The Arccosine Function

The cosine function decreases from 1 to -1 over the interval $[0, \pi]$. It is therefore reasonable to define $\cos ^{-1} x$ to be the number between 0 and π whose cosine is x. By an argument almost identical to the argument in Section 2, we can show that

$$
\begin{equation*}
\frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \tag{3}
\end{equation*}
$$

There is an easier way to derive Equation 3. Note that $\cos y=\sin (\pi / 2-y)$ for all y, and that as y travels from 0 to $\pi, \pi / 2-y$ travels from $\pi / 2$ down to $-\pi / 2$. It follows that $\cos ^{-1} x=\pi / 2-\sin ^{-1} x$. Differentiate both sides with respect to x : we get Equation 3 . Since $\cos ^{-1} x$ is such a close relative of $\sin ^{-1} x$, the function $\cos ^{-1} x$ occurs explicitly in very few formulas.

6 Other Inverse Trigonometric Functions

We could also define the inverse trigonometric functions $\sec ^{-1} x, \csc ^{-1} x$, and $\cot ^{-1} x$. We differentiate $\sec ^{-1} x$, partly because it is the only one of the three that gets seriously used, but mainly as an exercise in algebra.

Define $\sec ^{-1} x$ as the number between 0 and π whose secant is x. We could differentiate $\sec ^{-1} x$ by using an approach along the lines of Section 2, but there is a much easier way.

If an angle has secant equal to x, then it has cosine equal to $1 / x$. Thus $\sec ^{-1} x=\cos ^{-1}(1 / x)$. Differentiate both sides with respect to x, using the Chain Rule and Equation 3. We obtain

$$
\begin{equation*}
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x^{2} \sqrt{1-\frac{1}{x^{2}}}} \tag{4}
\end{equation*}
$$

We can simplify Equation 4, but it has to be done carefully, since the square root of x^{2} is not equal to x when x is negative. We have

$$
x^{2} \sqrt{1-\frac{1}{x^{2}}}=x^{2} \sqrt{\frac{x^{2}-1}{x^{2}}}=x^{2} \frac{\sqrt{x^{2}-1}}{\sqrt{x^{2}}}=x^{2} \frac{\sqrt{x^{2}-1}}{|x|}=|x| \sqrt{x^{2}-1}
$$

and therefore

$$
\begin{equation*}
\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}} \tag{5}
\end{equation*}
$$

Note. There are other definitions of $\sec ^{-1} x$: everyone agrees that when x is positive then $\sec ^{-1} x$ should lie between 0 and $\pi / 2$. But for negative x, some people define $\sec ^{-1} x$ to be the number between π and $3 \pi / 2$ whose secant is x. Under this definition, the derivative of $\sec ^{-1} x$ turns out to be $1 /\left(x \sqrt{x^{2}-1}\right)$.

7 Integrating the Inverse Trigonometric Functions

The differentiation formulas 1 and 2 can be rewritten as integration formulas:

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C
$$

and

$$
\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C
$$

These integration formulas explain why the calculus 'needs' the inverse trigonometric functions. The functions $1 / \sqrt{1-x^{2}}, 1 /\left(1+x^{2}\right)$, and their close relatives come up naturally in many applications. The inverse trigonometric functions supply names for the antiderivatives of these important functions.

8 Problems

1. (a) Graph the curve $y=\sin ^{-1}(\sin x)$ for $-4 \pi \leq x \leq 4 \pi$.
(b) Graph the curve $y=\arccos (\cos x)$ for $-4 \pi \leq x \leq 4 \pi$.
2. Graph the curve $y=\tan ^{-1}(\tan x)-\tan \left(\tan ^{-1} x\right)$ for $-4 \pi \leq x \leq 4 \pi$.
3. Let $f(x)=\sin \left(\tan ^{-1} x\right)$. Find a formula for $f(x)$ that does not involve trigonometric functions.
4. Let $y=\frac{x}{2} \arcsin x+\frac{x}{2} \sqrt{1-x^{2}}$. Find $\frac{d y}{d x}$ and simplify as much as possible.
5. Let $y=2 x \tan ^{-1} x-\ln \left(1+x^{2}\right)$. Find $\frac{d y}{d x}$.
6. Let $f(t)=\sin ^{-1}(\sqrt{1-t})$. Find $f^{\prime}(t)$ and simplify.
7. Let $f(u)=(\arcsin u)^{-1}$. Find $f^{\prime}(1 / \sqrt{2})$.
8. Let $y=\left(\frac{1}{3}\right) \tan ^{-1}\left(\frac{x}{3}\right)$. Find $\frac{d y}{d x}$ and simplify.
9. Find the equation of the tangent line to $y=\arctan \left(x^{2}\right)$ at the point on the curve which has x-coordinate equal to 1 .
10. Find the equations of the two lines that are tangent to the curve $y=$ $\sin ^{-1} x$ and have slope equal to $\sqrt{2}$.
11. Show that the curve with equation $\tan ^{-1} x+\tan ^{-1} y=\pi / 2$ passes through the point $(1 / \sqrt{3}, \sqrt{3})$, and find the equation of the tangent line to the curve at this point.
12. Show that if $\ln \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{x}{y}=0$ and $x \neq y$ then $\frac{d y}{d x}=\frac{x+y}{x-y}$.
13. Let $y=2^{\tan ^{-1} x}$. Find $\frac{d y}{d x}$.
14. Let $f(t)=\arctan \left(\sqrt{t^{2}-1}\right)$. Find $f^{\prime}(t)$.
15. Let $f(x)=\tan ^{-1}\left(\frac{x+1}{x-1}\right)+\tan ^{-1} x$. Find $f^{\prime}(x)$ and simplify.
16. Let $\cot ^{-1} x$ be the number in the interval $[0, \pi]$ whose cotangent is x. Find the derivative of $\cot ^{-1} x$ with respect to x.
17. Calculate the following integrals:
(a) $\int \frac{d x}{1+4 x^{2}}$;
(b) $\int \frac{d x}{\sqrt{4-x^{2}}}$;
(c) $\int \frac{x d x}{4+9 x^{4}}$.
18. Calculate the following integrals:
(a) $\int_{-1 / 2}^{1 / 2} \arcsin x d x$;
(b) $\int_{1}^{\sqrt{3}} \arctan x d x$;
(c) $\int_{0}^{\infty} \arctan (3 x+1) d x$.
19. Calculate the following integrals
(a) $\int x \arctan x d x$;
(b) $\quad \int x \sin ^{-1} x d x$;
(c) $\int \ln \left(1+x^{2}\right) d x$.
20. Find, exactly, the area of the region that lies below $y=\frac{1}{1+4 x^{2}}$ but above $y=\frac{1}{4+x^{2}}$.
