
The Inverse Trigonometric Functions

These notes amplify on the book’s treatment of inverse trigonometric
functions and supply some needed practice problems. Please see pages 543–
544 for the graphs of sin−1 x, cos−1 x, and tan−1 x.

1 The Arcsine Function

My sine is x; who am I? If x is any real number such that |x| ≤ 1, there are
infinitely many possible answers. For example, let x = 1/2. Then sin y = x
when y = π/6, 5π/6, −7π/6, −11π/6, 13π/6, 17π/6, −19π/6, and so on.

Note however that as y travels from −π/2 to π/2, sin y travels from −1 to
1. Since sin y is continuous and increasing in the interval −π/2 ≤ y ≤ π/2,
it follows that for any x between −1 and 1 there is exactly one y between
−π/2 and π/2 such that sin y = x. We can therefore define a new function
sin−1 as follows:

Definition 1. If −1 ≤ x ≤ 1, then sin−1 x (also known as arcsin x) is the
number between −π/2 and π/2 whose sine is equal to x.

Comment. If the function f has an inverse, that inverse is generally de-
noted by f−1. The notation sin−1 x that has just been introduced is (more
or less) in accord with this general convention. Not quite! The sine func-
tion does not have an inverse, since given sin t it is not possible to recover t
uniquely.

Maybe we are being too fussy. But the notation can also be a source
of confusion. For note that sin2 x is a standard abbreviation for (sinx)2,
and sin3 x is a standard abbreviation for (sin x)3. So should sin−1 x mean
(sinx)−1? Maybe it should. But it doesn’t!

The notation arcsinx is preferred by many mathematicians. Unfortu-
nately, sin−1 seems to be gaining ground over arcsin, maybe because it fits
the cramped space on calculator keyboards better. There are several other
notations, including “Arc sin,” and “asin.”
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Pronunciations vary: sin−1 x can be pronounced “sine inverse (of) x,”
“inverse sine (of) x,” or even “arc sine x.”

Comment. You don’t have to know a lot about geography to know the
capital of the country whose capital is Amman. And you don’t have to
know much about trigonometry to find sin(sin−1(0.123)). Indeed it is clear
that

sin(sin−1 x) = x for all x between −1 and 1.

The behaviour of sin−1(sinx) is more complicated. Let x be any number
in the interval [−π/2, π/2]. Then the number between −π/2 and π/2 whose
sine is sinx is clearly x.

But suppose for example that π/2 ≤ x ≤ 3π/2. Since the sine function
is symmetrical about the line x = π/2, we have sinx = sin(π − x). And
since π − x lies between −π/2 and π/2,

sin−1(sin x) = sin−1(sin(π − x)) = π − x.

2 Differentiating the Arcsine Function

Let y = sin−1 x. Then for all x in the interval [−1, 1]

sin y = x.

Assume that y is differentiable at all x in (−1, 1)—it really is, but we omit
the proof. If we differentiate both sides of the equation above with respect
to x, then the Chain Rule gives

(cos y)
dy

dx
= 1.

Thus if cos y 6= 0 then

dy

dx
=

1
cos y

=
1

cos(sin−1 x)
.

The above formula is correct but unattractive. To improve it, recall the
familiar identity

cos2 y + sin2 y = 1.

Since y = sin−1 x, we have

cos2 y = 1− (sin y)2 = 1− (sin(sin−1 x))2 = 1− x2.
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But y lies in the interval (−π/2, π/2), and therefore cos y is positive. It
follows that cos y =

√
1− x2 and therefore

d

dx
(sin−1 x) =

1√
1− x2

(1)

3 The Arctangent Function

The tangent function is continuous and increasing on the interval (−π/2, π/2).
Moreover, as t approaches −π/2 from the right, tan t becomes arbitrarily
large negative, while as t approaches π/2 from the left, tan t becomes ar-
bitrarily large positive. It follows that as t ranges over (−π/2, π/2), tan t
takes on every real value exactly once.

Thus the tangent function, restricted to the interval (−π/2, π/2), has an
inverse. We can therefore define a new function tan−1 as follows:

Definition 2. For any real number x, tan−1 x (also known as arctan x) is
the number between −π/2 and π/2 whose tangent is equal to x.

4 Differentiating the Arctangent Function

Let y = tan−1 x. Then for all x

tan y = x.

Assume that y is differentiable for all x—it really is, but we omit the proof.
If we differentiate both sides of the above equation with respect to x, we
obtain

(sec2 y)
dy

dx
= 1.

It follows that
dy

dx
=

1
sec2 y

=
1

sec2(tan−1 x)
.

To make the above formula more attractive, recall the identity 1 + tan2 y =
sec2 y. If you do not recall it, you can quickly derive it by dividing both
sides of the identity cos2 y + sin2 y = 1 by cos2 y.

Since y = tan−1 x, we have

sec2 y = 1 + (tan y)2 = 1 + (tan(tan−1 x))2 = 1 + x2,

and therefore we can rewrite the formula for the derivative of tan−1 x as

d

dx
(tan−1 x) =

dy

dx
=

1
1 + x2

(2)
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5 The Arccosine Function

The cosine function decreases from 1 to −1 over the interval [0, π]. It is
therefore reasonable to define cos−1 x to be the number between 0 and π
whose cosine is x. By an argument almost identical to the argument in
Section 2, we can show that

d

dx
(cos−1 x) =

dy

dx
=

−1√
1− x2

. (3)

There is an easier way to derive Equation 3. Note that cos y = sin(π/2− y)
for all y, and that as y travels from 0 to π, π/2 − y travels from π/2 down
to −π/2. It follows that cos−1 x = π/2 − sin−1 x. Differentiate both sides
with respect to x: we get Equation 3. Since cos−1 x is such a close relative
of sin−1 x, the function cos−1 x occurs explicitly in very few formulas.

6 Other Inverse Trigonometric Functions

We could also define the inverse trigonometric functions sec−1 x, csc−1 x,
and cot−1 x. We differentiate sec−1 x, partly because it is the only one of
the three that gets seriously used, but mainly as an exercise in algebra.

Define sec−1 x as the number between 0 and π whose secant is x. We
could differentiate sec−1 x by using an approach along the lines of Section 2,
but there is a much easier way.

If an angle has secant equal to x, then it has cosine equal to 1/x. Thus
sec−1 x = cos−1(1/x). Differentiate both sides with respect to x, using the
Chain Rule and Equation 3. We obtain

d

dx
(sec−1 x) =

1

x2

√
1− 1

x2

. (4)

We can simplify Equation 4, but it has to be done carefully, since the square
root of x2 is not equal to x when x is negative. We have

x2

√
1− 1

x2
= x2

√
x2 − 1
x2

= x2

√
x2 − 1√
x2

= x2

√
x2 − 1
|x| = |x|

√
x2 − 1

and therefore
d

dx
(sec−1 x) =

1
|x|
√
x2 − 1

. (5)
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Note. There are other definitions of sec−1 x: everyone agrees that when x
is positive then sec−1 x should lie between 0 and π/2. But for negative x,
some people define sec−1 x to be the number between π and 3π/2 whose
secant is x. Under this definition, the derivative of sec−1 x turns out to be
1/(x
√
x2 − 1).

7 Integrating the Inverse Trigonometric Functions

The differentiation formulas 1 and 2 can be rewritten as integration formulas:∫
dx√

1− x2
= sin−1 x+ C

and ∫
dx

1 + x2
= tan−1 x+ C.

These integration formulas explain why the calculus ‘needs’ the inverse
trigonometric functions. The functions 1/

√
1− x2, 1/(1 + x2), and their

close relatives come up naturally in many applications. The inverse trigono-
metric functions supply names for the antiderivatives of these important
functions.

8 Problems

1. (a) Graph the curve y = sin−1(sinx) for −4π ≤ x ≤ 4π.

(b) Graph the curve y = arccos(cos x) for −4π ≤ x ≤ 4π.

2. Graph the curve y = tan−1(tan x)− tan(tan−1 x) for −4π ≤ x ≤ 4π.

3. Let f(x) = sin(tan−1 x). Find a formula for f(x) that does not involve
trigonometric functions.

4. Let y =
x

2
arcsin x +

x

2

√
1− x2. Find

dy

dx
and simplify as much as

possible.

5. Let y = 2x tan−1 x− ln(1 + x2). Find
dy

dx
.

6. Let f(t) = sin−1(
√

1− t). Find f ′(t) and simplify.

7. Let f(u) = (arcsinu)−1. Find f ′(1/
√

2).
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8. Let y =
(

1
3

)
tan−1

(x
3

)
. Find

dy

dx
and simplify.

9. Find the equation of the tangent line to y = arctan(x2) at the point
on the curve which has x-coordinate equal to 1.

10. Find the equations of the two lines that are tangent to the curve y =
sin−1 x and have slope equal to

√
2.

11. Show that the curve with equation tan−1 x + tan−1 y = π/2 passes
through the point (1/

√
3,
√

3), and find the equation of the tangent
line to the curve at this point.

12. Show that if ln(x2 + y2) + 2 tan−1 x

y
= 0 and x 6= y then

dy

dx
=
x+ y

x− y .

13. Let y = 2tan−1 x. Find
dy

dx
.

14. Let f(t) = arctan(
√
t2 − 1). Find f ′(t).

15. Let f(x) = tan−1

(
x+ 1
x− 1

)
+ tan−1 x. Find f ′(x) and simplify.

16. Let cot−1 x be the number in the interval [0, π] whose cotangent is x.
Find the derivative of cot−1 x with respect to x.

17. Calculate the following integrals:

(a)
∫

dx

1 + 4x2
; (b)

∫
dx√

4− x2
; (c)

∫
x dx

4 + 9x4
.

18. Calculate the following integrals:

(a)
∫ 1/2

−1/2
arcsin x dx; (b)

∫ √3

1
arctan x dx; (c)

∫ ∞
0

arctan(3x+ 1) dx.

19. Calculate the following integrals

(a)
∫
x arctan x dx; (b)

∫
x sin−1 x dx; (c)

∫
ln(1 + x2) dx.

20. Find, exactly, the area of the region that lies below y =
1

1 + 4x2
but

above y =
1

4 + x2
.

6


