
The Newton-Raphson Method

1 Introduction

The Newton-Raphson method, or Newton Method, is a powerful technique
for solving equations numerically. Like so much of the differential calculus,
it is based on the simple idea of linear approximation. The Newton Method,
properly used, usually homes in on a root with devastating efficiency.

The essential part of these notes is Section 2.1, where the basic formula
is derived, Section 2.2, where the procedure is interpreted geometrically,
and—of course—Section 6, where the problems are. Peripheral but perhaps
interesting is Section 3, where the birth of the Newton Method is described.

2 Using Linear Approximations to Solve Equa-
tions

Let f(x) be a well-behaved function, and let r be a root of the equation
f(x) = 0. We start with an estimate x0 of r. From x0, we produce an
improved—we hope—estimate x1. From x1, we produce a new estimate
x2. From x2, we produce a new estimate x3. We go on until we are ‘close
enough’ to r—or until it becomes clear that we are getting nowhere.

The above general style of proceeding is called iterative. Of the many it-
erative root-finding procedures, the Newton-Raphson method, with its com-
bination of simplicity and power, is the most widely used. Section 2.4 de-
scribes another iterative root-finding procedure, the Secant Method.

Comment. The initial estimate is sometimes called x1, but most mathe-
maticians prefer to start counting at 0.

Sometimes the initial estimate is called a “guess.” The Newton Method
is usually very very good if x0 is close to r, and can be horrid if it is not.
The “guess” x0 should be chosen with care.
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2.1 The Newton-Raphson Iteration

Let x0 be a good estimate of r and let r = x0 + h. Since the true root is r,
and h = r− x0, the number h measures how far the estimate x0 is from the
truth.

Since h is ‘small,’ we can use the linear (tangent line) approximation to
conclude that

0 = f(r) = f(x0 + h) ≈ f(x0) + hf ′(x0),

and therefore, unless f ′(x0) is close to 0,

h ≈ − f(x0)
f ′(x0)

.

It follows that
r = x0 + h ≈ x0 −

f(x0)
f ′(x0)

.

Our new improved (?) estimate x1 of r is therefore given by

x1 = x0 −
f(x0)
f ′(x0)

.

The next estimate x2 is obtained from x1 in exactly the same way as x1 was
obtained from x0:

x2 = x1 −
f(x1)
f ′(x1)

.

Continue in this way. If xn is the current estimate, then the next estimate
xn+1 is given by

xn+1 = xn −
f(xn)
f ′(xn)

(1)

2.2 A Geometric Interpretation of the Newton-Raphson It-
eration

In the picture below, the curve y = f(x) meets the x-axis at r. Let a be the
current estimate of r. The tangent line to y = f(x) at the point (a, f(a))
has equation

y = f(a) + (x− a)f ′(a).

Let b be the x-intercept of the tangent line. Then

b = a− f(a)
f ′(a)

.
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Compare with Equation 1: b is just the ‘next’ Newton-Raphson estimate of
r. The new estimate b is obtained by drawing the tangent line at x = a, and
then sliding to the x-axis along this tangent line. Now draw the tangent line
at (b, f(b)) and ride the new tangent line to the x-axis to get a new estimate
c. Repeat.

We can use the geometric interpretation to design functions and starting
points for which the Newton Method runs into trouble. For example, by
putting a little bump on the curve at x = a we can make b fly far away from
r. When a Newton Method calculation is going badly, a picture can help us
diagnose the problem and fix it.

It would be wrong to think of the Newton Method simply in terms
of tangent lines. The Newton Method is used to find complex roots of
polynomials, and roots of systems of equations in several variables, where
the geometry is far less clear, but linear approximation still makes sense.

2.3 The Convergence of the Newton Method

The argument that led to Equation 1 used the informal and imprecise symbol
≈. We probe this argument for weaknesses.

No numerical procedure works for all equations. For example, let f(x) =
x2 + 17 if x 6= 1, and let f(1) = 0. The behaviour of f(x) near 1 gives no
clue to the fact that f(1) = 0. Thus no method of successive approximation
can arrive at the solution of f(x) = 0. To make progress in the analysis, we
need to assume that f(x) is in some sense smooth. We will suppose that
f ′′(x) (exists and) is continuous near r.

The tangent line approximation is—an approximation. Let’s try to get
a handle on the error. Imagine a particle travelling in a straight line, and
let f(x) be its position at time x. Then f ′(x) is the velocity at time x. If
the acceleration of the particle were always 0, then the change in position
from time x0 to time x0 +h would be hf ′(x0). So the position at time x0 +h
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would be f(x0) +hf ′(x0)—note that this is the tangent line approximation,
which we can also think of as the zero-acceleration approximation.

If the velocity varies in the time from x0 to x0 + h, that is, if the ac-
celeration is not 0, then in general the tangent line approximation will not
correctly predict the displacement at time x0 +h. And the bigger the accel-
eration, the bigger the error. It can be shown that if f is twice differentiable
then the error in the tangent line approximation is (1/2)h2f ′′(c) for some
c between x0 and x0 + h. In particular, if |f ′′(x)| is large between x0 and
x0 + h, then the error in the tangent line approximation is large. Thus we
can expect large second derivatives to be bad for the Newton Method. This
is what goes wrong in Problem 7(b).

In the argument for Equation 1, from 0 ≈ f(x0) + hf ′(x0) we concluded
that h ≈ −f(x0)/f ′(x0). This can be quite wrong if f ′(x0) is close to 0:
note that 3.01 is close to 3, but 3.01/10−8 is not at all close to 3/10−8. Thus
we can expect first derivatives close to 0 to be bad for the Newton Method.
This is what goes wrong in Problems 7(a) and 8.

These informal considerations can be turned into positive theorems about
the behaviour of the error in the Newton Method. For example, if |f ′′(x)/f ′(x)|
is not too large near r, and we start with an x0 close enough to r, the New-
ton Method converges very fast to r. (Naturally, the theorem gives “not too
large,” “close enough,” and “very fast” precise meanings.)

The study of the behaviour of the Newton Method is part of a large and
important area of mathematics called Numerical Analysis.

2.4 The Secant Method

The Secant Method is the most popular of the many variants of the Newton
Method. We start with two estimates of the root, x0 and x1. The iterative
formula, for n ≥ 1 is

xn+1 = xn −
f(xn)

Q(xn−1, xn)
, where Q(xn−1, xn) =

f(xn−1)− f(xn)
xn−1 − xn

.

Note that if xn is close to xn−1, then Q(xn−1, xn) is close to f ′(xn), and
the two methods do not differ by much. We can also compare the methods
geometrically. Instead of sliding along the tangent line, the Secant Method
slides along a nearby secant line.

The Secant Method has some advantages over the Newton Method. It
is more stable, less subject to the wild gyrations that can afflict the Newton
Method. (The differences are not great, since the geometry is nearly the
same.) To use the Secant Method, we do not need the derivative, which

4



can be expensive to calculate. The Secant Method, when it is working well,
which is most of the time, is fast. Usually we need about 45 percent more
iterations than with the Newton Method to get the same accuracy, but each
iteration is cheaper. Your mileage may vary.

3 Newton’s Newton Method

Nature and Nature’s laws lay hid in night:
God said, Let Newton be! And all was light.

Alexander Pope, 1727

It didn’t quite happen that way with the Newton Method. Newton had
no great interest in the numerical solution of equations—his only numerical
example is a cubic. And there was a long history of efficient numerical
solution of cubics, going back at least to Leonardo of Pisa (“Fibonacci,”
early thirteenth century).

At first sight, the method Newton uses doesn’t look like the Newton
Method we know. The derivative is not even mentioned, even though the
same manuscript develops the Newtonian version of the derivative!

Newton’s version of the Method is mainly a pedagogical device to explain
something quite different. Newton really wanted to show how to solve the
following ‘algebraic’ problem: given an equation F (x, y) = 0, express y as a
series in powers of x.

But before discussing his novel symbolic calculations, Newton tried to
motivate the idea by doing an analogous calculation with numbers, using
the equation

y3 − 2y − 5 = 0.

We describe, quoting (in translation) from Newton’s De Methodis Serierum
et Fluxionum, how he deals with the equation. Like any calculation, New-
ton’s should be followed with pencil in hand.

“Let the equation y3−2y−5 = 0 be proposed for solution and let
the number 2 be found, one way or another, which differs from
the required root by less than its tenth part. I then set 2+p = y
and in place of y in the equation I substitute 2 + p. From this
there arises the new equation

p3 + 6p2 + 10p − 1 = 0.

whose root p is to be sought for addition to the quotient. Specifi-
cally, (when p3+6p2 is neglected because of its smallness) we have
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10p − 1 = 0, or p = 0.1 narrowly approximates the truth. Ac-
cordingly, I write 0.1 in the quotient and, supposing 0.1 + q = p,
I substitute this fictitious value for it as before. There results

q3 + 6.3q2 + 11.23q + 0.061 = 0.

And since 11.23q + 0.061 = 0 closely approaches the truth, in
other words very nearly q = −0.0054 . . . .”

Newton puts −0.0054 + r for q in q3 + 6.3q2 + 11.23q + 0.061 = 0,
Neglecting the terms in r3 and r2, he concludes that r ≈ −0.00004852. His
final estimate for the root is 2 + p+ q + r, that is, 2.09455148.

As we go through Newton’s calculation, it is only with hindsight that
we see in it the germs of the method we now call Newton’s. When Newton
discards terms in powers of p, q, and r higher than the first, he is in effect
doing linear approximation. Note that 2 + p, 2 + p + q, and 2 + p + q + r
are, more or less, the numbers y1, y2, and y3 of Problem 3.

Newton substitutes 0.1 + q for p in p3 + 6p2 + 10p − 1 = 0. Surely he
knows that it is more sensible to substitute 2.1 + q for y in the original
equation y2 − 2y − 5 = 0. But his numerically awkward procedure, with an
ever changing equation, is the right one for the series expansion problems
he is really interested in. And Newton goes on to use his method to do
something really new: he finds infinite series for, among others, the sine and
cosine functions.

Comment. When Newton asks that we make sure that the initial estimate
“differs from the required root by less than its tenth part,” he is trying (with
no justification, and he is wrong) to quantify the idea that we should start
close to the root. His use of the word “quotient” may be confusing. He
doesn’t really mean quotient, he is just making an analogy with the usual
‘long division’ process.

Newton says that q = −0.0054. But −0.61/11.23 is about −0.00543188.
Here Newton truncates deliberately. He is aiming for 8 place accuracy, but
knows that he can work to less accuracy at this stage. Newton used a
number of tricks to simplify the arithmetic—an important concern in the
Before Calculators Era.

Historical Note. Newton’s work was done in 1669 but published much
later. Numerical methods related to the Newton Method were used by al-
Kāsh̄ı, Viète, Briggs, and Oughtred, all many years before Newton.

Raphson, some 20 years after Newton, got close to Equation 1, but only
for polynomials P (y) of degree 3, 4, 5, . . . , 10. Given an estimate g for a
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root, Raphson computes an ‘improved’ estimate g+x. He sets P (g+x) = 0,
expands, discards terms in xk with k ≥ 2, and solves for x. For polynomials,
Raphson’s procedure is equivalent to linear approximation.

Raphson, like Newton, seems unaware of the connection between his
method and the derivative. The connection was made about 50 years later
(Simpson, Euler), and the Newton Method finally moved beyond polynomial
equations. The familiar geometric interpretation of the Newton Method may
have been first used by Mourraille (1768). Analysis of the convergence of
the Newton Method had to wait until Fourier and Cauchy in the 1820s.

4 Using the Newton-Raphson Method

4.1 Give Newton a Chance

• Give Newton the right equation. In ‘applied’ problems, that’s where
most of the effort goes. See Problems 10, 11, 12, and 13.

• Give Newton an equation of the form f(x) = 0. For example, xex = 1
is not of the right form: write it as xex− 1 = 0. There are many ways
to make an equation ready for the Newton Method. We can rewrite
x sinx = cos x as x sinx−cosx = 0, or x−cotx = 0, or 1/x−tanx = 0,
or . . . . How we rewrite can have a dramatic effect on the behaviour
of the Newton Method. But mostly it is not worth worrying about.

• A Newton Method calculation can go bad in various ways. We can
usually tell when it does: the first few xn refuse to settle down. There
is almost always a simple fix: spend time to find a good starting x0.

• A graphing program can help with x0. Graph y = f(x) and eyeball
where the graph crosses the x-axis, zooming in if necessary. For sim-
ple problems, a graphing program can even produce a final answer.
But to solve certain scientific problems we must find, without human
intervention, the roots of tens of thousands of equations. Graphing
programs are no good for that.

• Even a rough sketch can help. It is not immediately obvious what
y = x2 − cos x looks like. But the roots of x2 − cos x = 0 are the
x-coordinates of the points where the familiar curves y = x2 and y =
cosx meet. It is easy to see that there are two such points, symmetric
across the y-axis. Already at x = 1 the curve y = x2 is above y = cos x.
A bit of fooling around with a calculator gives the good starting point
x0 = 0.8.
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4.2 The Newton Method can go bad

• Once the Newton Method catches scent of the root, it usually hunts
it down with amazing speed. But since the method is based on local
information, namely f(xn) and f ′(xn), the Newton Method’s sense of
smell is deficient.

• If the initial estimate is not close enough to the root, the Newton
Method may not converge, or may converge to the wrong root. See
Problem 9.

• The successive estimates of the Newton Method may converge to the
root too slowly, or may not converge at all. See Problems 7 and 8.

4.3 The End Game

• When the Newton Method works well, which (with proper care) is most
of the time, the number of correct decimal places roughly doubles with
each iteration.

• If we want to compute a root correct to say 5 decimal places, it seems
sensible to compute until two successive estimates agree to 5 places.
While this is theoretically unsound, it is a widely used rule of thumb.
And the second estimate will likely be correct to about 10 places.

• We can usually verify that our final answer is close enough. Suppose,
for example, that b is our estimate for a root of f(x) = 0, where f is
continuous. If f(b− 10−8) and f(b+ 10−8) have different signs, then
there must be a root between b− 10−8 and b+ 10−8, so we know that
the error in b has absolute value less than 10−8.

5 A Sample Calculation

We use the Newton Method to find a non-zero solution of x = 2 sin x. Let
f(x) = x − 2 sin x. Then f ′(x) = 1 − 2 cos x, and the Newton-Raphson
iteration is

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
xn − 2 sin xn
1− 2 cos xn

=
2(sinxn − xn cos xn)

1− 2 cos xn
. (2)

Let x0 = 1.1. The next six estimates, to 3 decimal places, are:

x1 = 8.453 x3 = 203.384 x5 = − 87.471
x2 = 5.256 x4 = 118.019 x6 = −203.637.
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Things don’t look good, and they get worse. It turns out that x35 <
−64000000. We could be stubborn and soldier on. Miracles happen—but
not often. (One happens here, around n = 212.)

To get an idea of what’s going wrong, use a graphing program to graph
y = x−2 sinx, and recall that xn+1 is where the tangent line at xn meets the
x-axis. The bumps on y = x− 2 sin x confuse the Newton Method terribly.

Note that choosing x0 = π/3 ≈ 1.0472 leads to immediate disaster, since
then 1 − 2 cos x0 = 0 and therefore x1 does not exist. Thus with x0 = 1.1
we are starting on a (nearly) flat part of the curve. Riding the tangent line
takes us to an x1 quite far from x0. And x1 is also on a flat part of the
curve, so x2 is far from x1. And x2 is on a flat part of the curve: the chaotic
ride continues.

The trouble was caused by the choice of x0. Let’s see whether we can do
bettter. Draw the curves y = x and y = 2 sin x. A quick sketch shows that
they meet a bit past π/2. But we will be sloppy and take x0 = 1.5. Here
are the next six estimates, to 19 places—the computations were done to 50.

x1 = 2.0765582006304348291 x4 = 1.8954942764727706570
x2 = 1.9105066156590806258 x5 = 1.8954942670339809987
x3 = 1.8956220029878460925 x6 = 1.8954942670339809471

The next iterate x7 agrees with x6 in the first 19 places, indeed in the first
32, and the true root is equal to x6 to 32 places.

Comment. The equation x = 2 sinx can be rewritten as 2/x − 1/ sinx =
0. If x0 is any number in (0, π), Newton quickly takes us to the root.
The reformulation has changed the geometry: there is no longer a flat spot
inconveniently near the root. Rewriting the equation as (sinx)/x = 1/2 also
works nicely.

6 Problems

1. Use the Newton-Raphson method, with 3 as starting point, to find a
fraction that is within 10−8 of

√
10. Show (without using the square

root button) that your answer is indeed within 10−8 of the truth.

2. Let f(x) = x2 − a. Show that the Newton Method leads to the recur-
rence

xn+1 =
1
2

(
xn +

a

xn

)
.
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Heron of Alexandria (60 CE?) used a pre-algebra version of the above
recurrence. It is still at the heart of computer algorithms for finding
square roots.

3. Newton’s equation y3 − 2y − 5 = 0 has a root near y = 2. Starting
with y0 = 2, compute y1, y2, and y3, the next three Newton-Raphson
estimates for the root.

4. Find all solutions of e2x = x+ 6, correct to 4 decimal places; use the
Newton Method.

5. Find all solutions of 5x + lnx = 10000, correct to 4 decimal places;
use the Newton Method.

6. A calculator is defective: it can only add, subtract, and multiply.
Use the equation 1/x = 1.37, the Newton Method, and the defective
calculator to find 1/1.37 correct to 8 decimal places.

7. (a) A devotee of Newton-Raphson used the method to solve the equa-
tion x100 = 0, using the initial estimate x0 = 0.1. Calculate the next
five Newton Method estimates.

(b) The devotee then tried to use the method to solve 3x1/3 = 0, using
x0 = 0.1. Calculate the next ten estimates.

8. Suppose that

f(x) =

{
e−1/x2

if x 6= 0,
0 if x = 0.

The function f is continuous everywhere, in fact differentiable arbi-
trarily often everywhere, and 0 is the only solution of f(x) = 0. Show
that if x0 = 0.0001, it takes more than one hundred million iterations
of the Newton Method to get below 0.00005.

9. Use the Newton Method to find the smallest and the second smallest
positive roots of the equation tan x = 4x, correct to 4 decimal places.

10. The circle below has radius 1, and the longer circular arc joining A
and B is twice as long as the chord AB. Find the length of the chord
AB, correct to 18 decimal places.

11. Find, correct to 5 decimal places, the x-coordinate of the point on the
curve y = lnx which is closest to the origin. Use the Newton Method.
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12. It costs a firm C(q) dollars to produce q grams per day of a certain
chemical, where

C(q) = 1000 + 2q + 3q2/3

The firm can sell any amount of the chemical at $4 a gram. Find
the break-even point of the firm, that is, how much it should produce
per day in order to have neither a profit nor a loss. Use the Newton
Method and give the answer to the nearest gram.

13. A loan of A dollars is repaid by making n equal monthly payments of
M dollars, starting a month after the loan is made. It can be shown
that if the monthly interest rate is r, then

Ar = M

(
1− 1

(1 + r)n

)
.

A car loan of $10000 was repaid in 60 monthly payments of $250.
Use the Newton Method to find the monthly interest rate correct to 4
significant figures.
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