The common course website contains the definitive information of the facts you need to know. 1. Easy antiderivatives.

You recall differentiating functions and so some antiderivatives are known:

$$
\begin{gathered}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \text { for } n \neq-1 \\
\int \frac{1}{x} d x=\ln (x)+C \\
\int e^{x} d x=e^{x}+C \\
\int \sin (x) d x=-\cos (x)+C \\
\int \cos (x) d x=\sin (x)+C
\end{gathered}
$$

We introduced the inverse trigonometric functions precisely to tackle the following

$$
\begin{gathered}
\int \frac{1}{1+x^{2}} d x=\tan ^{-1}(x)+C \\
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1}(x)+C=-\cos ^{-1}(x)+C
\end{gathered}
$$

We combine with other rules to find antiderivatives for a variety of functions including polynomials.

$$
\begin{aligned}
\int(f(x)+g(x)) d x & =\int f(x) d x+\int g(x) d x \\
\int k f(x) & =k \int f(x) d x
\end{aligned}
$$

Note that these rules arise from the similar rules for differentiation.
The chain rule for differentiation gives rise to

$$
\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))+C
$$

We use this rule very successfully to attack a variety of integrals:

$$
\int f(3 x-2) d x
$$

can be tackled by using the idea that $g(x)=3 x-2$. For convenience we write this as the substitution $u=3 x-2$ and $d u=3 d x$ so that

$$
\int f(3 x-2) d x=\frac{1}{3} \int f(u) d u
$$

where hopefully the second integral is more straightforward.
The product rule for differentiation gives rise the idea of integration by parts.

$$
\int\left(f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right) d x=f(x) g(x)+C
$$

where we use this as follows

$$
\int f^{\prime}(x) g(x)=f(x) g(x)-\int f(x) g^{\prime}(x) d x+C
$$

We need not write down the C in this equation (although remembering it in most other circumstances is required) because the second integral is an indefinite integral and so it has a built in constant C already.

To aid computations we write this as

$$
\int u^{\prime} v d x=u v-\int u v^{\prime} d x
$$

Amazingly this solves many integrals. Our first applications are to obtain some reductions:

$$
\int x^{k} e^{x}
$$

Let $u=x^{k}$ and $v^{\prime}=e^{x}$ and then $u^{\prime}=k x^{k-1}$ while $v=e^{x}$.

$$
\int x^{k} e^{x} d x=x^{k} e^{x}-\int k x^{k-1} e^{x} d x
$$

where the latter integral has a reduced power of x. We can repeat until we get down to

$$
\int x^{0} e^{x} d x=e^{x}+C
$$

Sometimes the reduction works right away (in the above example when $k=1$) or sometimes there is no apparent reduction but we encounter the desired integral again and then get an equation involving the desired integral which we can solve.

$$
\int \sec ^{3}(x) d x
$$

We use $\sec ^{3}(x)=\sec ^{2}(x) \sec (x)$ and then apply integration by parts with $u^{\prime}=\sec ^{2}(x), v=\sec (x)$ so that $u=\tan (x)$ and $v^{\prime}=\tan (x) \sec (x)$ so that

$$
\begin{gathered}
\int \sec ^{3}(x) d x=\sec (x) \tan (x)-\int \tan ^{2}(x) \sec (x) d x=\sec (x) \tan (x)-\int\left(1+\sec ^{2}(x)\right) \sec (x) d x \\
=\sec (x) \tan (x)-\int \sec (x)-\int \sec ^{3}(x) d x
\end{gathered}
$$

We already know that $\int \sec (x) d x=\ln (|\sec (x)+\tan (x)|)+C$ and we shuffle to obtain

$$
2 \int \sec ^{3}(x) d x=\sec (x) \tan (x)-\ln (|\sec (x)+\tan (x)|)+C
$$

so that

$$
\int \sec ^{3}(x) d x=\frac{1}{2} \sec (x) \tan (x)-\frac{1}{2} \ln (|\sec (x)+\tan (x)|)+C
$$

This is an example of the reduction formulas given in the book. When I checked on wikipedia they give both the derivation and some applications of this function. Admittedly these examples are unlikely to arise in Economics but the computation of $\int \sin ^{m}(x) \cos ^{n}(x) d x$ and $\int \tan ^{m}(x) \sec ^{n}(x) d x$ are nice examples when we have a complete description how to proceed.

Specialized techniques are useful for trignometric integrals, integrals involving expressions such as $\sqrt{a^{2}+x^{2}}$ or $\sqrt{a^{2}-x^{2}}$ (method of trigonometric substitutions), or integrals involving ratios of polynomials (method of partial fractions). This means you have a wealth of possible solution strategies and so when faced with an given integral you should consider it careful before proceeding. Try a substitution for example.

Finally not all integrals have attractive answers and can only be readily approached by numerical approximations.

