MATH 105 Quiz \# 2 Friday Jan 22, 2016 (4 questions, two sides) FAMILY NAME: STUDENT NUMBER:

1. Compute $\frac{\partial}{\partial x}\left(\frac{x y}{2 x+y}\right)$
2. Given $f(x, y)=x y+\cos (x y)$, determine $f_{x}(x, y)$ and $f_{x y}(x, y)$.
3. Given $f(x, y)=2 x^{3}-6 x y+3 y^{2}$, determine the critical points of $f(x, y)$.
4. Given that $f(x, y)=x^{4}-4 x y+y^{4}$, we compute that $f_{x}(x, y)=4 x^{3}-4 y$ and $f_{y}=4 y^{3}-4 x$. Verify that $(0,0),(1,1)$ and $(-1,-1)$ are critical points and classify them (if possible) as either local minima, local maxima or saddle points.

MATH 105 Quiz \# 2 Friday Jan 22, 2016 (4 questions, two sides) FAMILY NAME: STUDENT NUMBER:

1. Compute $\frac{\partial}{\partial x}\left(\frac{x y}{x+2 y}\right)$
2. Given $f(x, y)=x y+\sin (x y)$, determine $f_{x}(x, y)$ and $f_{x y}(x, y)$.
3. Given $f(x, y)=4 x^{3}-12 x y+6 y^{2}$, determine the critical points of $f(x, y)$.
4. Given that $f(x, y)=x^{4}-4 x y+y^{4}$, we compute that $f_{x}(x, y)=4 x^{3}-4 y$ and $f_{y}=4 y^{3}-4 x$. Verify that $(0,0),(1,1)$ and $(-1,-1)$ are critical points and classify them (if possible) as either local minima, local maxima or saddle points.
