MATH 105 Quiz \# 6 Monday Mar 21, 2016 FAMILY NAME: (4 questions, two sides, 15 minutes) STUDENT NUMBER:

Work must be shown for full marks.

1. A continuous random variable X has probability density function $p(x)=\frac{1}{9}, 0 \leq x \leq 9$. Find b so that

$$
\operatorname{Prob}(0 \leq X \leq b)=\frac{1}{3}
$$

2. Let $f(x)=k \sqrt{x}$, where k is a constant. Find the value of k so that $f(x)$ is a probability density function on $0 \leq x \leq 4$.
3. Compute the cumulative distribution function corresponding to the probability density function $f(x)=2(x-1)$, for $1 \leq x \leq 2$.
4. Let X be the continuous random variable corresponding to the failure time (from purchase time) of a certain brand of cell phone. Let the probability density function of X be

$$
p(x)=e^{-x}, \quad \text { for } x \geq 0
$$

Determine the average failure time for that brand of cell phones.

MATH 105 Quiz \# 6 Monday Mar 21, 2016 FAMILY NAME: (4 questions, two sides, 15 minutes) STUDENT NUMBER:

Work must be shown for full marks.

1. A continuous random variable X has probability density function $p(x)=\frac{1}{6}, 0 \leq x \leq 6$. Find b so that

$$
\operatorname{Prob}(0 \leq X \leq b)=\frac{1}{3}
$$

2. Let $f(x)=k \sqrt{x}$, where k is a constant. Find the value of k so that $f(x)$ is a probability density function on $0 \leq x \leq 9$.
3. Compute the cumulative distribution function corresponding to the probability density function $f(x)=\frac{1}{2}(x-1)$, for $1 \leq x \leq 3$.
4. Let X be the continuous random variable corresponding to the failure time (from purchase time) of a certain brand of cell phone. Let the probability density function of X be

$$
p(x)=e^{-x}, \quad \text { for } x \geq 0
$$

Determine the average failure time for that brand of cell phones.

