Math 184 Problem

(from Charles Lamb)
A monopoly manufacturer estimates that when the price of an item it produces is $\$ 100$ then the weekly demand for the items is 3,000 . For every $\$ 1$ increase in price, the weekly demand decreases by 30 items. Assume that the fixed costs of production on a weekly basis are $\$ 72,000$ and the variable costs are $\$ 60$ per item.
(a) Find the linear 'demand equation' for the item. Use the notation p for the unit price and q for the weekly demand.
(b) Find the weekly linear cost function $C=C(q)$.
(c) Find the weekly quadratic revenue function $R=R(q)$.
(d) Find the 'break-even' points where $C=R$.
(e) Graph $C=C(q)$ and $R=R(q)$ on the same set of axes with an eye to explaining why there are two 'break-even' points.
(f) Find the weekly quadratic profit function $P=P(q)$.
(g) Show that $P(q)$ on the graph in part (e) and indicate the regions of profit and loss (negative profit) on the q-axis.
(h) How should the monopoly company operate in order to maximize the weekly profit function $P=P(q)$? Give two ways of finding the correct answer.
(a) Find the linear 'demand equation' for the item. Use the notation p for the unit price and q for the weekly demand.
We are told that $p=100$ and $q=3000$ is on the line. We may think of price p as a function of q and obtain that the slope is $\frac{\Delta p}{\Delta q}=\frac{1}{-30}=1 \frac{1}{30}$. Thus using the standard point/slope formula (a line through $\left(x_{1}, y_{1}\right)$ with slope m has equation $y-y_{1}=m\left(x-x_{1}\right)$) to get

$$
p-100=-\frac{1}{30}(q-3000) \text { or } p=-\frac{1}{30} q+200
$$

This is the demand equation which we could also write (by rearranging) as

$$
q=-30 p+6000 \text { or } 30 p+q=6000
$$

(b) Find the weekly linear cost function $C=C(q)$. The expression $C(q)$ is suggesting we want to write C as a function of q only.

$$
C(q)=72000+60 q
$$

(c) Find the weekly quadratic revenue function $R=R(q)$.

$$
R=p q=\left(-\frac{1}{30} q+200\right) q=-\frac{1}{30} q^{2}+200 q
$$

We could also express R as a function of p if we preferred.
(d) Find the 'break-even' points where $C=R$. We seek those q for which $C(q)=R(q)$ and so $72000+60 q=-\frac{1}{30} q^{2}+200 q$. This gives us a quadratic to solve:

$$
\frac{1}{30} q^{2}-140 q+72000=0
$$

which has solutions $q=600$ or $q=3600$. Both are legitimate solutions
(e) Graph $C=C(q)$ and $R=R(q)$ on the same set of axes with an eye to explaining why there are two 'break-even' points. The main idea here is that R yields a downward opening parabola while the line representing C cuts the parabola in two places.
(f) Find the weekly quadratic profit function $P=P(q)$. We use our vast accounting knowledge:

$$
P(q)=R(q)-C(q)=-\frac{1}{30} q^{2}+140 q-72000
$$

(g) Show that $P(q)$ on the graph in part (e) and indicate the regions of profit and loss (negative profit) on the q-axis. Given that we have a downward opening quadratic, the region of profitability will be those q between the two break-even points
(h) How should the monopoly company operate in order to maximize the weekly profit function $P=P(q)$? Give two ways of finding the correct answer. Determining the q which maximizes $P(q)$ is a standard one variable optimization problem. we could easily use Calculus (find q for which $P^{\prime}(q)=0$) but given that it is aquadratic we can readily use completing the square

$$
P(q)=-\frac{1}{30}(q-2100)^{2}+75000
$$

from which we deduce that $P(q) \leq 75000$ and we get $P(q)=75000$ only if $q=2100$.

