MATH 184 Computing Derivatives

Some derivative rules which you can use mechanically are:

$$
\begin{aligned}
& \text { SumRule : } \frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x) \\
& \text { Constant Multiple Rule }: \frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x) \\
& \text { Product Rule }: \frac{d}{d x}(f(x) g(x))=\left(\frac{d}{d x} f(x)\right) \times g(x)+f(x) \times\left(\frac{d}{d x} g(x)\right) \\
& \text { Quotient Rule }: \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\left(\frac{d}{d x} f(x)\right) g(x)-f(x) \frac{d}{d x} g(x)}{g^{2}(x)} \\
& \text { Chain Rule }: \frac{d}{d x} f\left((g(x))=\left.\frac{d}{d x} f(x)\right|_{g(x)} \cdot \frac{d}{d x} g(x)\right.
\end{aligned}
$$

We are using the notation $\left.h(x)\right|_{a}$ to denote the value of the function $h(x)$ at $x=a$. Another way to write the Chain Rule that may be easier is $\left(f(g(x))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.$ where we have f^{\prime} is $\frac{d}{d x} f(x)$. Thus the awkward expression $\left.\frac{d}{d x} f(x)\right|_{g(x)}$ is the derivative of f evaluated at $g(x)$
(i.e. we substitute $g(x)$ for x). We cannot directly say that $\frac{d}{d x} x^{0}=0 \cdot x^{-1}$ since $\frac{d}{d x} x^{0}=0$ while $0 \cdot x^{-1}=0$ for all $x \neq 0$ but is not defined for $x=0$. This subtle difference will show up in MATH 105 when you wish to integrate (or anti-differentiate) the function $\frac{1}{x}$.

This will enable us to compute derivatives of quite complicated functions. Sometimes on tests we are only interested in Calculator Ready format which means that we computed a formula for the derivative but have not simplified.

We have some additional rules for special functions:

$$
\begin{array}{rlrl}
\frac{d}{d x} x^{p}=p x^{p-1}(\text { for } p \neq 0) & \\
\frac{d}{d x} e^{x} & =e^{x} & \frac{d}{d x} \ln (x)=\frac{1}{x} \\
\frac{d}{d x} \sin (x) & =\cos (x) & \frac{d}{d x} \cos (x)=-\sin (x)
\end{array}
$$

Try to puzzle out the following. We use a mixture of the rules. I think I have chosen mostly obvious rules so that for example $\frac{d}{d x}(g(x))^{4}=4 \cdot(g(x))^{3} \cdot g^{\prime}(x)$.

Examples

$$
\begin{gathered}
\frac{d}{d x}\left(\sin \left(x^{2}+5\right)\left(x^{3}+3 x\right)^{4}\right)= \\
\left(-\cos \left(x^{2}+5\right) \cdot 2 x\right)\left(\left(x^{3}+3 x\right)^{4}\right)+\left(\sin \left(x^{2}+5\right)\right) \cdot\left(4 \cdot\left(x^{3}+3 x\right)^{3} \cdot\left(3 x^{2}+3\right)\right) \\
\frac{d}{d x} e^{x} \cdot \sin (x) \cdot\left(x^{3}+x^{1.5}\right)= \\
e^{x}\left(\sin (x)\left(x^{3}+x^{1.5}\right)\right)+e^{x}\left(\left(\cos (x)\left(x^{3}+x^{1.5}\right)+\sin (x)\left(3 x^{2}+1.5 x^{.5}\right)\right)\right.
\end{gathered}
$$

These answers are in Calculator Ready form (all derivatives have been handled) but they are very unsimplified. It is not worth simplifying in such cases.

