MATH 223 Assignment #1 Due Friday September 17 at start of class. Upload to Canvas.

1. Let \(A = \begin{bmatrix} x & 1 \\ 1 & 2 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 \\ x & y \end{bmatrix} \). Determine all \(x, y \) so that \(AB = BA \).

2. Find a \(2 \times 2 \) matrix \(A \), no entry of which is 0, with \(A^2 = -A \). Note that your first guesses \(A = -I \) or \(A = 0 \) (which would arise from \(A^2 + A = A(A + I) = 0 \)) but both these matrices have 0 entries. Polynomials in matrices behave in different way that polynomials of a single variable.

3. Gavin has a sum of \(s \) dollars in \(t \) bills (not treasury bills!) The bills are either $3 or $5 (Cook Islands?). Give a \(2 \times 2 \) matrix taking \(x \) (number of $3 bills) and \(y \) (number of $5 bills) and giving as output \(s \) and \(t \).

4. Assume you are given a pair of matrices \(A, B \) which satisfy \(AB = BA \) (We say \(A \) and \(B \) commute). Show that if we set \(C = A^2 + 2A \) and \(D = B^3 + 5I \), then \(CD = DC \). Then try to generalize this in some interesting way, namely find a property so that for matrices \(C, D \) with that certain property, then \(CD = DC \). For example \(C = A^2 + 6A \) and \(D = 3B^3 - 2I \) will also have \(CD = DC \).

5. a) Assume \(A, B \) are \(2 \times 2 \) invertible matrices so that \(A^{-1} \) and \(B^{-1} \) exist. Show that \((AB)^{-1} = B^{-1}A^{-1} \).

b) Given
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
then define \(A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \),
where \(A^T \) is called the transpose of \(A \). The dot product of two vectors \(x = \begin{bmatrix} a \\ b \end{bmatrix} \), \(y = \begin{bmatrix} c \\ d \end{bmatrix} \) is \(x \cdot y = ac + bd \). Then the \(i, j \) entry of \(AB \) is the dot product of the \(i \)th row of \(A \) and the \(j \)th column of \(B \). Using this idea, show that \((AB)^T = B^T A^T \). (One could verify \((AB)^T = B^T A^T \) for two arbitrary \(2 \times 2 \) matrices \(A, B \) directly but the argument wouldn’t generalize to larger matrices).

6. Find the matrix \(A \) associated with the linear transformation \(T \) that has \(T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \) and \(T \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \).

7. Let \(f_\theta \) be the linear transformation rotating the plane by \(\theta \) counterclockwise around the origin. Let \(A_\theta \) denote the matrix corresponding to the transformation \(f_\theta \). Explain in words (using transformations) why \(A_\theta A_\phi = A_{\theta + \phi} \). Show how you can use this to derive the angle sum formulas for \(\cos(\theta + \phi), \sin(\theta + \phi) \) in terms of \(\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi) \).

8. Consider the rotation matrix \(A_\theta \) as above. Explain why it has a unique inverse.

9. Consider two nonzero vectors \(x = \begin{bmatrix} a \\ b \end{bmatrix} \), \(y = \begin{bmatrix} c \\ d \end{bmatrix} \), each of unit length. Then there is a \(\theta \) with \(0 \leq \theta < 2\pi \) so that \(y = A_\theta x \). Use our knowledge of rotation matrices to establish a simple condition on \(a, b, c, d \) so that the angle \(\theta \) satisfies \(0 < \theta < \pi \). You may assume \(a, b, c, d \) are nonzero, if that assists you.