1. Compute

\[\text{i) } \det \begin{bmatrix} x & 0 & 0 \\ 10 & x & 0 \\ 52 & 223 & 1 \end{bmatrix} = x^2 \text{ (triangular matrix and } \det(A) = \det(A^T)) \]

\[\text{ii) } \det \begin{bmatrix} 99 & 100 & 101 \\ 0 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = 0 \text{ (row of 0's)} \]

\[\text{iii) } \det \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} = 5 \text{ (expansion about first row will work or gaussian elimination but there are more clever ways.)} \]

2. (nice problem) Consider three 3 digit numbers write in decimal digits as \(abc\), \(def\) and \(ghi\). (e.g. \(abc = a \cdot 10^2 + b \cdot 10 + c\)). Assume that each of the numbers \(abc\), \(def\) and \(ghi\) is divisible by 17. Show that

\[\det \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \]

is also divisible by 17.

Let

\[A = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \]

What we do is apply row operations adding 100 times the first row to the third row and 10 times the second row to the third row and we obtain

\[B = \begin{bmatrix} a & d & g \\ b & e & h \\ abc & def & ghi \end{bmatrix} \]

where \(\det(B) = \det(A)\). We may assume \(abc = 17j\), \(def = 17k\) and \(ghi = 17\ell\) for integers \(j, k, \ell\) so that

\[B = \begin{bmatrix} a & d & g \\ b & e & h \\ 17j & 17k & 17\ell \end{bmatrix} \]

Now

\[\det(B) = 17 \det \begin{bmatrix} a & d & g \\ b & e & h \\ j & k & \ell \end{bmatrix}. \]

What multiplies 17 is the determinant of an integer matrix and so we conclude 17 divides \(\det(A)\).

3. \[A = \begin{bmatrix} x & 1 & 1 \\ 1 & x & 1 \\ x & 2 & 1 \end{bmatrix} \]

\[\det(x(x - 2) - (1 - x) + (2 - x^2) = 1 - x \]
Thus we can determine the inverse when \(1 - x \neq 0 \).

\[
A^{-1} = \begin{bmatrix}
\frac{x-2}{1-x} & \frac{1}{1-x} & 1 \\
-1 & 0 & 1 \\
\frac{2-x^2}{1-x} & \frac{-x}{1-x} & -1 - x
\end{bmatrix}
\]

You can check this. I did.

4. Assume that \(A = MBM^{-1} \). We can show that \(\det(A - \lambda I) = \det(B - \lambda I) \) as follows. \(\det(A - \lambda I) = \det(MBM^{-1} - \lambda I) = \det(MBM^{-1} - M(\lambda I)M^{-1}) = \det(M(B - \lambda I)M^{-1}) = \det(M) \det(B - \lambda I) \det(M^{-1}) = \det(B - \lambda I) \). We are using the product rule at several points including our cancellation that \(\det(M) \det(M^{-1}) = 1 \).

5. Let \(A \) be an \(n \times n \) matrix with an eigenvector \(v \) of eigenvalue \(t \). Assume we can obtain an invertible matrix \(M \) which has \(v \) as its first column. We are given \(Av = tv \) and compute \(AM = [tv \cdots] \). We can write \([tv \cdots] = [tv B] \) where \(B \) is an \(n \times (n - 1) \) matrix. I claim

\[
[tv B] = M \begin{bmatrix}
t \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]

and thus

\[
M^{-1}AM = \begin{bmatrix}
t \\
0 \\
0 \\
\vdots
\end{bmatrix}
\]

and so the first column is a \(t \) followed by 0’s.

Using expansion about the first column, we can easily compute \(\det(M^{-1}AM - \lambda I) = (t - \lambda)p(\lambda) \) where \(p(\lambda) \) is a polynomial in \(\lambda \) of degree \(n - 1 \). This means \(A \) has \(t \) as an eigenvalue.

6. (from a test) Assume \(A \) is a \(3 \times 3 \) matrix, and \(M \) is an invertible matrix with \(A = MDM^{-1} \), where \(D \) is the diagonal matrix

\[
D = \begin{bmatrix}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{bmatrix}
\]

Show that \((A - 2I)(A - 3I)(A - 4I) = 0 \) where 0 denotes the \(3 \times 3 \) matrix of 0’s.

We note that

\[
\]

\[
= M(D - 2I)M^{-1}M(D - 3I)M^{-1}M(D - 4I)M^{-1} = M(D - 2I)(D - 3I)(D - 4I)M^{-1}
\]

\[
= M \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix} \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
-2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix} M^{-1}
\]

\[
= M0M^{-1} = 0.
\]

7. Show that the \(4 \times 4 \) matrix of 1’s is diagonalizable. Try to generalize to the \(n \times n \) matrix of 1’s.
I’ll go directly to the $n \times n$ case. You might note that 0 is an eigenvalue and then (with very easy Gaussian Elimination) find the eigenvectors

$$
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
-1 & 0 & \cdots & 0 \\
0 & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & -1
\end{bmatrix}
$$

We also might guess the eigenvector of 1’s which you can verify has eigenvalue n. Now we check

$$
M = \begin{bmatrix}
1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & -1 & 0 & 0 & \cdots & 0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 1
\end{bmatrix}
$$

8. Let $A = (a_{ij})$ be an $n \times n$ matrix with integral entries such that the diagonal entries are all not divisible by 3 (a_{ii} is not evenly divisible by 3) and all off diagonal entries are divisible by 3 (a_{ij} is divisible by 3 for $i \neq j$). Show that A has $\det(A) \neq 0$, i.e. A is invertible.

I have seen a variety of proofs of this result. Note if we multiply an integer by a number divisible by 3 then the product is divisible by 3. Also if we multiply two numbers not divisible by 3, then the product is not divisible by 3. Also 0 is divisible by 3.

Use induction on n, namely we use $H(k)$ to denote the statement that The determinant of a $k \times k$ matrix with integral entries such that the diagonal entries are all not divisible by 3 (a_{ii} is not evenly divisible by 3) and all off diagonal entries are divisible by 3 (a_{ij} is divisible by 3 for $i \neq j$) is itself not divisible by 3. This is a stronger induction hypothesis than you might initially choose, making this question harder. It is automatic that if $\det(A)$ is not divisible by 3 (and is an integer), then $\det(A) \neq 0$. But the reverse is not true.

We note that $H(1)$ is trivially true. We could verify that $H(2)$ is true by noting

$$
\det \begin{bmatrix}
a & 3b \\
3c & d
\end{bmatrix} = ad - 9bc.
$$

If we assume a, d are not divisible by 3 then neither is ad and so neither is $ad - 9bc$. For some $k \geq 1$, assume $H(k)$ is true. We will show $H(k+1)$ is true. Let A be the $(k + 1) \times (k + 1)$ matrix with

$$a_{ij} = \begin{cases}
\text{not divisible by 3} & \text{if } i = j \\
\text{divisible by 3} & \text{if } i \neq j
\end{cases}
$$

Now we use the recursive formula for $\det A$:

$$
\det(A) = (-1)^{1+1}a_{11} \det M_{11} + (-1)^{1+2}a_{12} \det M_{12} + \cdots + (-1)^{1+k+1}a_{1(k+1)} \det M_{1(k+1)}.
$$

We note that $a_{12}, a_{13}, \ldots, a_{1(k+1)}$ are all divisible by 3 and so $(-1)^{1+j}a_{1j} \det M_{1j}$ is divisible by 3 for $j \neq 1$. Also, $H(k)$ implies that $\det M_{11}$ is not divisible by 3, a_{11} is not divisible by 3 and so $(-1)^{1+1}a_{11} \det M_{11}$ is not divisible by 3. We have that $\det(A)$ is the sum of a number not divisible by 3 for $j \neq 1$. Hence $H(k+1)$ is true.

Now given that $H(1)$ is true and $H(k)$ implies $H(k+1)$ for all k, then by the principle of mathematical induction, $H(k)$ is true for all k and hence $H(n)$ is true. Thus $H(n)$ is true and so the $\det(A)$ is not divisible by 3 and so $\det(A) \neq 0$.