
MATH 223. Equiangular lines in d dimensions.

Notes adapted from notes of Aart Blokhuis of Eindhoven. The particular form of the indepen-
dence proof was suggested by Chris Godsil

Consider the problem of equiangular lines in euclidean space. Lines through the origin in Rd

are one-dimensional subspaces and can be represented by L =< u > or L = span(u), where u is
one of the two unit vectors on line L. The angle 0 ≤ φ ≤ π/2 between two lines < u > and < v >
is then determined by cosφ = α, where α = |(u, v)| = |uTv|.

A family of lines is called equiangular if every pair of them determines the same angle. We
are interested in an upper bound for the number of equiangular lines in Rd. This bound is due
to Lemmens and Seidel, a polynomial argument is given by Koornwinder, the following “tensor”-
argument is essentially equivalent.
So, let L =< u > be a line in Rd, where vectors are column vectors. We can form the d by d
matrix U = uuT . This is a symmetric matrix with trace tr(U) = 1 since u is chosen to be a unit
vector. Note U is the projection matrix onto the line < u >.

Now there must be a fixed number 0 < α < 1 for our collection of lines so for any two different
lines given buy unit vectors < u >, < v > in our collection we have u · v = uTv = vTu = α.

Let the equiangular lines in Rd be given by {< vi > : i = 1, 2, . . . , t}. I claim the associated
projection matrices {viv

T
i : i = 1, 2, . . . , t} are linearly independent. Assume the contrary, namely

there are constants c1, c2, . . . , ct not all zero so that

t∑
i=1

civiv
T
i = 0,

the righthand side being the d × d zero matrix. If we multiply on the right by vj and on the left
by vT

j we obtain that

vT
j

(
t∑

i=1

civiv
T
i

)
vj = vT

j 0vj

and so we have (for any choice of j)(
t∑

i=1

ci

)
α2 + (1− α2)cj = 0

using vT
j viv

T
i vj = α2 for i 6= j and vT

j vjv
T
j vj = 1 and with the righthand side being the 1 × 1

matrix 0. Since
(∑t

i=1 ci
)

is a constant independent of cj and 1−α2 6= 0, then cj must be the same
for each j. Thus c1 = c2 = · · · = ct. But now this yields a contradiction: For example

tr

(
t∑

i=1

civiv
T
i

)
=

t∑
i=1

ci = tc1 ,

and so c1 = c2 = · · · = ct = 0. This contradiction shows that the t matrices viv
T
i are linearly

independent.
The space of real symmetric d × d matrices is d(d + 1)/2 dimensional (determined by entries

below and on the diagonal; you did this kind of idea on an assignment). This gives us the upper
bound d(d+ 1)/2 for the size of a set of equiangular lines in Rd.

It is possible to compute α = 1/
√
d+ 2 if the upper bound is realized.



How good is this bound? For n = 0 and n = 1 we have (formal) equality, but no interesting
geometrical picture. For n = 2 we get three lines at 60◦ angles (π/3) and α = 1/2. For n = 3 the
bound is 6 with α = 1/

√
5. This is realized by the 6 main diagonals of the icosahedron, or to be

more explicit: let τ be the positive root of the quadratic x2 − x− 1 = 0, so τ = (1 +
√

5)/2. Now
consider the six lines spanned by the 12 vectors (0,±1,±τ), and their cyclic permutations.
The next case of equality is n = 7. Here the example (which is unique) is most easily described
using the Fano plane, the projective plane of order 2. Consider the 28 lines spanned by the 56
vectors (±1,±1, 0,±1, 0, 0, 0) and their cyclic permutations. Note that the ’support’ of each vector
corresponds to three collinear points in the Fano plane, a 2− (7, 3, 1) design. Since two lines in the
Fano plane intersect in a unique point, all relevant inner products are ±1.

People can also handle the case d = 23.

Generalizations to Cd

Recently much attention has been given to the analogous problem in complex space Cd. A
complex line through the origin is again a one dimensional subspace < u >, where we take u in
such a way that uHu = 1. uH stands for the conjugate transpose of u. To define the ’angle’
between two lines we compute < u,v >= uHv and take the modulus α = |uHv|. As before we can
prove an upper bound for the number of equiangular lines. Associate to a line < u > the d by d
matrix U = uuH . This is now a hermitian matrix, with trace 1. Hermitian matrices form a real
vector space of dimension d2. The dimension follows with two contributions for each off diagonal
entry below the main diagonal (C has dimension 2 over R) and the diagonal entries are all real.
As before we get an upper bound, in this case d2.
Problem: Fill in the details in the above ’proof’ and show that in case of equality one has
α = 1/

√
n+ 1.

Problem: Construct a set of 4 equiangular lines in C2 and 9 in C3.
Interesting fact: It seems that for all d the bound can be reached, but nobody knows how or why.
Sets realizing equality have several interesting names, one of them being SICPOVMS: see for in-
stance:
http://info.phys.unm.edu/papers/reports/sicpovm.html
All known SICPOVMS have been constructed as follows: Consider the subgroup of Gl(n,C) gen-
erated by a cyclic permutation of the coordinates, and diag(1, ζ, . . . , ζn−1) where ζ is a (primitive)
n-th root of unity. This group has order n3 but in its representation on the lines only n2. For a
suitable line < u > the orbit is a SICPOVM, at least it seems so numerically in dimensions up 45.
Have fun, and let me know if you find anything spectacular, Aart Blokhuis.


