Let us consider the vector space \mathbf{R}^m for convenience. Imagine you are given k linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ in \mathbf{R}^n. We would like to find $m-k$ vectors $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{m-k}\}$ so that

$$\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{m-k}\}$$

is a basis for \mathbf{R}^n.

There many ways to approach this. One way is to use Gaussian elimination techniques. Form an $m \times (m+k)$ matrix $A = [\mathbf{v}_1 \mathbf{v}_2 \ldots \mathbf{v}_k \mathbf{e}_1 \mathbf{e}_2 \ldots \mathbf{e}_m]$ where $\mathbf{e}_1 \mathbf{e}_2 \ldots \mathbf{e}_m$ is the standard basis for \mathbf{R}^m. Then $\text{colsp}(A) = \mathbf{R}^m$ and so a basis of the column space as reported by Gaussian elimination will be a basis of \mathbf{R}^m. Now you can check that Gaussian elimination must have the first k columns as pivots (else there would be a dependency among $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$) and then we have a basis of \mathbf{R}^m that contains $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$.

An alternate solution is to form a matrix $B = [\mathbf{v}_1 \mathbf{v}_2 \ldots \mathbf{v}_k]$ and apply Gaussian elimination (by multiplying B by an invertible E) which yields a matrix EB which has $m-k$ rows of 0’s. Now append to EB the $m-k$ columns $\mathbf{e}_{k+1}, \mathbf{e}_{k+2}, \ldots, \mathbf{e}_m$ so that the resulting $m \times m$ matrix C has rank m. Now form $E^{-1}C$ which will also have rank m and the columns of $E^{-1}C$ will be a basis for \mathbf{R}^m and will be a basis including $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$.

If we are given an arbitrary m-dimensional vector space V over field \mathbf{R}, we can choose a basis for V and then coordinatize vectors so that we can manipulate them as vectors in \mathbf{R}^m.