MATH 223. Orthogonal Vector Spaces. Richard Anstee

Let U,V be vector spaces with U C V. We consider
Ut={veR": foraluel, <u,v>=0}
Theorem 0.1 U* is a vector space.

Proof: We show that U~ is a vector space. Here we must verify that 0 € U~ since this will not
follow from the other two closure rules. We have 0 € U~ because < u, 0 >= 0 always for any choice
u. Also if x,y € U+, then < x +y,u>=<x,u>+ <y,u>and < cx,u >= ¢ < X,u > by our
inner product axioms. Thus if for all u € U, < x,u >= 0 and < y,u >= 0, then we conclude that
<xX+y,u>=<xu>+<y,u>=0+0=0and also < cx,u >=c<x,u>=c-0=0. Thus
we have x +y and cx in U™, verifying closure. So U+ is a vector space. N

Consider a vector space U C R". Thus we are thinking of V = R" with the standard basis
€1,€,...,€,. Let {uj,uy, ..., ux} be a basis for U. Then if we write each u; with respect to the

standard basis we can form a matrix A = (a;;) with the ith row A being u]. Thus row space(A) = U
and dim(U) = rank(A). Then

null space(A) ={x : Ax =0} ={x:<x,u; >=0fori=1,2,...,k}

={x:<x,u>=0foralluecU}=U"

Here we are assuming < x,u; > is the standard dot product. Thus dim(U) + dim(U”) = n using
our result that dim(nullsp(A)) 4 rank(A) = n where n is the number of columns in A.

These ideas will happily generalize to two vector spaces U,V with U C V with a general inner
product. We do not need V' = R"™. There are two approaches. The first uses an orthonormal basis
for V in order to use the nullsp(A)) idea. If we apply Gram Schmidt or otherwise, we can obtain

a basis {vy, vy, ..., v,} with the orthonormal properties:
_J 0o ifi#yg
<V, V; >—{ 1 le:j (*)

Now proceed much as before, expressing

n
W =) a;v;
=1

since {v1,vay,...,Vv,} is a basis for V and u; € V. Let A be the associated k£ x n matrix. Now
consider any vector w € V' which we can write as w = Z;‘:l w;v;. Let w denote the vector in the
coordinates of the orthonormal basis so w = (w1, w, ..., w,)T Then

n n
<u,w >=< ZaijVj,ngVg >
j=1 =1



n
=D aiw;
j=1

using properties of (*). Now -7, a;;w; is the ith entry of Aw. Thus we have a way of expressing
U+ as the null space(A) and we have the desired result.

Theorem 0.2 Let U,V be vector spaces over R with U a subspace of V and V is finite dimensional.
Then dim(U) + dim(U+) = dim(V).

Another approach that doesn’t use an orthonormal basis of V' (with respect to the given inner
product) but just any basis vy, Vs, ..., v,, we use the observation that for a given u;, the function
< u;, X > is a linear transformation V' — R and so has an associated 1 x n matrix R;. First we
verify that the k linear transformations < wu;,x > are linearly independent (and so the k x n matrix
formed by these rows has rank = k). Assume

k
Zci <u,x>=0
i=1

where we use the notation = 0 to mean the identically 0 function, namely the 0 vector in the space

of functions. But now i i

Zci <, X >=< Zciui,x > for all x
i=1 i=1

but when we evaluate the righthand side at x = Zle ciu;, we obtain < x,x >= 0 and so by the

axioms of an inner product we have x = 0 i.e. Zle c;u; = 0 which forces ey =co=---=¢, =0
since the vectors uy, us, ..., u; are linearly independent.
We now form a matrix
Ry
Ry
A= )
Ry,

and null space(A) = U™.

As an example consider the vector space of polynomials of degree at most 2. Let U = span <
1,z > and V = span < 1,z,2> >. The basis of V will be {1,x,2?} and the basis for U will be
{1,2} . We introduce the inner product

<fg>= [ f@gas

and so we have an inner product space. We have that < 1,a + bz + cx? > and < x,a + bx + cx® >
are linear transformations 7" : V' — R.

1 b a
<1,a+bx + cx? >:/ (a+bx+cx2)dx:a+§+§:[1 1/2 1/3]| b
0
c
1 a b ¢ “
<z a+bx + ca? >:/ (a:v+bx2+c:v3)dx:§+§ 12[1/2 1/3 1/4] | b
0

o



Thus we take Ry =[1 1/2 1/3] and Ry = [1/2 1/3 1/4] and form

E

Gaussian elimination yields

1/6

null space(A) = {s { -1 ] : s € R}
1

We may check that < 1/6 — x + 22,1 >= [;(1/6 — 2 + 2®)dv = 1/6 — 1/2 +1/3 = 0 and
<1/6 —x+ 2%z >= [ ((1/6)x — 2%+ 2)dr = 1/12 — 1/3 +1/4 = 0 as expected. Thus

Theorem 0.3 Let U,V be vector spaces with U a subspace of V and V is finite dimensional. Then
Ut =u.

Proof: We note that if u € U, then u L v for all v € U+ and so u € ULL, hence U C UlL. We
have that, with dim(U) = k and dim(V') = n, then dim(U~) = n — k using the nullity theorem and
then dim(U+") = n— (n—k) = k. Given that dim(U) = dim(U~") = k, we deduce from U C U+"
that U*" =U. =



