
MATH 223. An averaging process. More complete notes. Richard Anstee

‘Oh, complex numbers. They go in circles’

The following example was given in the first lecture of a course to motivate students. We waited
until the sixth lecture. The computations we do below were also delayed to the end of that course.
The journal reference is at the bottom.

We needed to have a reasonable understanding of complex eigenvectors and eigenvalues. I would
remind you that a rotation matrix happily diagonalizes over the complex numbers with two complex
eigenvalues of unit length. Multiplying by such a complex number corresponds to a kind of rotation
in the argand plane where the real coordinates would happily oscillate back and forth. If this was
the x coordinates of our points and the y corrdinates were similarly treated then we would see a
rotation.

Imagine we are given n points P1 = (x1, y1), P2 = (x2, y2), . . ., Pn = (xn, yn). One could for
example choose points at random. Now consider an averaging process where we relace the ith point
by the average of Pi and Pi+1 where indices are taken modulo n so that we replace the nth point
by the average of Pn and P1. Repeat this process many times. Of course the points converge to
the centroid of the n points, but if we shift the points so that the centroid is the origin and if we
rescale (multiply by an appropriate factor at each averaging process) we get an amazing picture.
The n points are now arranged well spaced on an ellipse.

We have
n∑
i=1

xi =
n∑
i=1

yi = 0 or just
n∑
i=1

Pi = 0

This will be preserved by the averaging operation. Consider n = 5 and let

Avg5 =


1/2 1/2 0 0 0

0 1/2 1/2 0 0
0 0 1/2 1/2 0
0 0 0 1/2 1/2

1/2 0 0 0 1/2

 =
1

2


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1


Now we see that

Avg5


x1
x2
x3
x4
x5

 =
1

2


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1




x1
x2
x3
x4
x5

 =


(x1 + x2)/2
(x2 + x3)/2
(x3 + x4)/2
(x4 + x5)/2
(x5 + x1)/2


It is often more convenient to use vector notation so that with

x =


x1
x2
x3
x4
x5

 , y =


y1
y2
y3
y4
y5

 ,

the new x coordinates after averaging are Avg5x.
We can certainly deal with the x coordinates separately from the y coordinates.
To do the averaging process twice, we compute the new x and y coordinates as Avg5(Avg5x) =

Avg2
5x and Avg5(Avg5y) = (Avg5)

2y. Now keep averaging and it becomes clear that we need to
understand (Avg5)

n as n→∞.



The journal reference is [EV] given below. Our exposition essentially follows theirs and fre-
quently copies from their paper. We have Avg5 = I + C where C is the 5× 5 circulant:

C =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


Not surprisingly, this matrix has been studied before (not because of this problem). Note that
Cn = I. The eigenvalues of the n× n circulant are ω0, ω1, . . .

ωj = cos
(

2πj

n

)
+ i · sin

(
2πj

n

)
which are the n roots of unity with (ωj)

n = 1. Thus the eigenvalues of 1
2
(I +C) are 1

2
(1 + ωj) (see

assignment question). Moreover

vj =
1√
n



1
ωj
ω2
j
...

ωn−1j


are an orthonormal basis of eigenvectors of C and hence of 1

2
(I + C). Note that v0 is the vector

of 1’s normalized by multiplying by 1√
n
. Also we are saying vHi vj = 0 for i 6= j. This may not be

immediately obvious and note the matrix of eigenvectors will be unitary so this does not force C
to be symmetric, which it isn’t.

We use CT = C−1 (recall this is a permutation matrix as in an assignment question) and so
CH = C−1. Also ωiωn−i = 1 and ωHi = ωi = ωn−i = ω−1i . Note that Cvj = ωjvj. We compute

vHi (Cvj) = vHi ωjvj = ωj(v
H
i vj)

and then
(vHi C)vj = (vHi (C−1)H)vj = (C−1vi)

Hvj = (ω−1i vi)
Hvj = ωiv

H
i vj.

Then with ωi 6= ωj, we deduce vHi vj = 0. They are orthogonal.
The authors use a different ordering to emphasize certain issues.

λ1 = 1
2
(1 + ω0) = 1

λ2 = 1
2
(1 + ω1) = (1 + cos(2π

n
) + i · sin(2π

n
)/2 < 1

λ3 = 1
2
(1 + ωn−1) = λ̄2

λ4 = 1
2
(1 + ω2) = (1 + cos(4π

n
) + i · sin(4π

n
)/2

λ5 = 1
2
(1 + ωn−2) = λ̄4

From this ordering reorder the eigenvectors as z1, z2, . . . , z5. (In our case with n = 5, z2 = v1 and
z3 = vn−1 = v4). This ordering of eigenvalues groups together complex conjugates. And the n
eigenvalues are on a circle of radius 1 in the complex plane (argand plane) with center (.5, 0). if
we follow the order 1, ω1, ω2, . . . we traverse the circle in counterclockwise order. The new order
given as λ1, λ2, . . . also pairs up the eigenvalues in complex pairs except for v0, the eigenvector
for eigenvalue 1, which is the vector of 1’s). We will use n = 5. Even or odd n makes a slight



difference (-1 is an eigenvalue for n even) but we will focus on n odd with n = 5. We have ordered
the eigenvalues so that

|λ1| = 1 > |λ2| = |λ3| > |λ4| = |λ5|

A picture in the complex plane makes you realize that the roots of unity are on a circle and so with
the above ordering we are moving through eigenvalues from left to right (to smaller Re components).
We also reorder eigenvectors v0,v1, . . . ,v4 as z1, z2, z4, z5, z3 so that

Avg5zk = λkzk k = 1, 2, 3, 4, 5

Now consider a unit vector w ∈ Cn with w · 1 = 0 (called centroid zero). The vector w
either stands in for the vector x of x-coordinates of the n points or w stands in for the vector y
of y-coordinates of the n points. We shifted the points in our code so the centroid was 0 and so
w · 1 = 0. We chose a centroid of 0 so the picture does not drift but in this case it also ensures the
eigenvector of largest eigenvalue λ1 = 1 has coefficient 0 when we expand w as a linear combination
of eigenvectors. So express w in terms of our orthonormal basis of eigenvectors

w = γ1z1 + γ2z2 + · · ·+ γnzn

where we note that w · 1 = 0 forces γ1 = 0. Given the orthonormal basis and the fact w is a unit
vector, we have

|γ22 |+ |γ23 |+ · · ·+ |γ2n| = 1

We compute

(Avg5)
kw = |λ2|k

γ2
(
λ2
|λ2|

)k
z2 + γ2

(
λ3
|λ2|

)k
z3 +

5∑
j=4

γj

(
λj
|λ2|

)k
zj


We now wish to consider what happens as k →∞. The eigenvectors z2, z3 dominate as k →∞

and so we ignore the terms j = 4, 5. In general with more points only λ2 and λ3 continue to matter.
With λ2, λ3 /∈ R we must have the coefficients of z2 and z3 be complex conjugates (if not as

k →∞ we will have problems).
Let ti be the ith coordinate of the eigenvector v2 for λ2. Then ti will be the ith coordinate of the

eigenvector v̄2 = vn−1 for λ3. Then the ith coordinate of (Avg5)
kw is (|λ2|kcωk2 ti+ |λ2|kcω2

kti where
we have excluded the other terms which vanish as k grows. To consider the behaviour, we ignore
the factor |λ2|k which corresponds to shrinking over time. Matlab rescales for us anyway! The ith
coordinate of (Avg5)

kw behaves as an something like c′ cos(kθ) + d) and hence the coordinates of
a single point traces out an ellipse over time (as k grows) and all the points similarly trace out the
same ellipse. The spacing of the points comes from the form of the dominant eigenvectors z2 and
z3 for λ2 and λ3.

Let xi(k) be the ith entry of (Avg5)
kx and let yi(k) be the ith entry of (Avg5)

ky. We plot

(xi(k), yi(k)) as the points. The complex number λ2
|λ2| is eiθ for some θ. Thus the term

(
λ2
|λ2|

)k
is

eikθ. Then there is a choice (a+ bi) equal to product of γ2 and ti (the ith coordinate of z2). Then
for each k we have that

xi(k) = (a+ bi)eikθ + (a− bi)e−ikθ = (a+ bi)(cos(kθ) + i sin(kθ)) + (a− bi)(cos(kθ)− i sin(kθ))

= 2a cos(kθ)− 2b sin(kθ)



We can write this as 2
√
a2 + b2 cos(kθ + d) where d is chose to satisfy cos(d)

sin(d)
= − a

b
. So without

checking the constants, we have (for all k!)

xi(k) = c cos(kθ + d) and yi(k) = c cos(kθ + d′)

Plotted together as (xi(k), yi(k)) in xy plane, these yield an ellipse. Moreover as k grows we move
by ‘θ’ around the ellipse which we can see in the Matlab pictures.

For more details see the following paper:
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