Revised Simplex Formulas:

$$
\begin{gathered}
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} A_{N} \mathbf{x}_{N} \\
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N}
\end{gathered}
$$

Original problem:

$$
\begin{aligned}
& \text { Maximize } \quad 4 x_{2} \quad+2 x_{3} \\
& \begin{array}{ccccc}
x_{1} & +2 x_{2} & +x_{3} & & \leq 3 \\
x_{1} & -x_{2} & +2 x_{3} & +x_{4} & \leq 3 \\
& +x_{2} & & x_{4} & \leq 1
\end{array} \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& \left.\mathbf{c}^{T}=\begin{array}{ccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} \\
0 & 4 & 2 & 0 & 0 & 0 & 0
\end{array}\right) \\
& A=\begin{array}{c}
x_{1} \\
x_{5} \\
x_{6} \\
x_{6} \\
x_{7}
\end{array}\left(\begin{array}{cccccccc}
1 & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & b \\
1 & -1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \begin{array}{c}
x_{5}\left(\begin{array}{l}
3 \\
3 \\
x_{6} \\
x_{7}
\end{array}\right)
\end{array}
\end{aligned}
$$

Let us claim that $\left\{x_{2}, x_{3}, x_{4}\right\}$ is an optimal basis. We first compute the associated B^{-1} for convenience.

$$
\text { basis: }\left\{x_{2}, x_{3}, x_{4}\right\}, B^{-1}=\begin{gathered}
x_{5} \\
x_{2} \\
x_{3} \\
x_{4}
\end{gathered}\left(\begin{array}{ccc}
1 / 3 & -1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6 & 5 / 6
\end{array}\right)
$$

Final dictionary (for basis $\left\{x_{2}, x_{3}, x_{4}\right\}$) computed by Revised Simplex Formulas

$$
\begin{aligned}
& x_{2}=2 / 3-1 / 6 x_{1}-1 / 3 x_{5}+1 / 6 x_{6}-1 / 6 x_{7} \\
& x_{3}=5 / 3-2 / 3 x_{1}-1 / 3 x_{5} \quad-1 / 3 x_{6} \quad+1 / 3 x_{7} \\
& x_{4}=1 / 3+1 / 6 x_{1}+1 / 3 x_{5} \quad-1 / 6 x_{6} \quad-5 / 6 x_{7} \\
& z=6 \quad-2 x_{1} \quad-2 x_{5}
\end{aligned}
$$

We read off the values $2,0,0$ as the negatives of the coefficients of the slack variables, and deduce these are an optimal dual solution.
sample computation by revised simplex formulas

$$
\begin{gathered}
\mathbf{c}_{N}^{T}=\left(\begin{array}{cccc}
x_{1} & x_{5} & x_{6} & x_{7} \\
0 & 0 & 0 & 0
\end{array}\right) \\
\mathbf{c}_{B}^{T} B^{-1} A_{N}=\left(\begin{array}{lll}
4 & 2 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & -1 / 6 & 1 / 6 \\
1 / 3 & 1 / 3 & -1 / 3 \\
-1 / 3 & 1 / 6 & 5 / 6
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{lll}
2 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
2 & 2 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Thus

$$
\left.\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}=\begin{array}{cccc}
x_{1} & x_{5} & x_{6} & x_{7} \\
-2 & -2 & 0 & 0
\end{array}\right)
$$

Why are the negatives of the coefficients of the slack variables in the z row of a dictionary equal to $\mathbf{c}_{B}^{T} B^{-1}$? Here is the reason:

$$
\begin{gathered}
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N} \\
=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\left(\mathbf{c}^{T} \mathbf{0}^{T}\right)-\mathbf{c}_{B}^{T} B^{-1}[A I]\right)\binom{\mathbf{x}}{\mathbf{x}_{S}}
\end{gathered}
$$

(here we add the trivial entries $0=\left(c_{B}^{T}-c_{B}^{T} B^{-1} B\right) \mathbf{x}_{B}$ and then shuffle the variables into the original variables and the slack variables)

$$
=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}^{T}-\mathbf{c}_{B}^{T} B^{-1} A\right) \mathbf{x}+\left(-c_{B}^{T} B^{-1}\right) \mathbf{x}_{S}
$$

You may check that our solution $(2,0,0)$ is optimal in the dual LP:
Minimize $3 y_{1}+3 y_{2}+y_{3}$

$$
\begin{array}{cccc}
y_{1} & +y_{2} & & \geq 0 \\
2 y_{1} & -y_{2} & +y_{3} & \geq 4 \\
y_{1} & +2 y_{2} & & \geq 2
\end{array} \quad y_{1}, y_{2}, y_{3} \geq 0
$$

