MATH 340 Example of Infeasibility.
We give an example of an LP where we are unable to drive the artificial variable x_{0} to 0 . Or equivalently we find that when we maximize $w=-x_{0}$ we are ubable to get ot to zero so we cannot proceed to Phase two. I've neglected to give the problem with an objective function since it is not used in what follows.

We considered the following set of inequalities.

$$
\begin{aligned}
x_{1}+x_{2} & \leq 1 \\
-x_{1}-2 x_{2} & \leq-3
\end{aligned} \quad x_{1}, x_{2} \geq 0
$$

We add slack variables x_{3}, x_{4} and the artificial variable x_{0}.

$$
\begin{array}{rlrrrr}
x_{3} & = & 1 & -x_{1} & -x_{2} & +x_{0} \\
x_{4} & = & -3 & x_{1} & +2 x_{2} & +x_{0} \\
w & = & & & & \\
\hline
\end{array}
$$

We choose x_{0} to enter and x_{4} leaves in our non standard pivot to feasibility.

$$
\begin{array}{rlrlll}
x_{3} & = & 4 & -2 x_{1} & -3 x_{2} & +x_{4} \\
x_{0} & = & 3 & -x_{1} & -2 x_{2} & +x_{4} \\
w & = & -3 & +x_{1} & +2 x_{2} & -x_{4}
\end{array}
$$

We choose x_{2} to enter and x_{3} to leave.

$$
\begin{aligned}
& x_{2}=\quad \frac{4}{3}-\frac{2}{3} x_{1} \quad-\frac{1}{3} x_{3} \quad+\frac{1}{3} x_{4} \\
& x_{0}=\quad \frac{1}{3}+\frac{1}{3} x_{1}+\frac{2}{3} x_{3}+\frac{1}{3} x_{4} \\
& w=-\frac{1}{3} \quad-\frac{1}{3} x_{1} \quad-\frac{2}{3} x_{3} \quad-\frac{1}{3} x_{4}
\end{aligned}
$$

This yields the optimal solution if we are trying to maximize $w=-x_{0}$ and so we deduce there are no feasible choices for x_{1}, x_{2} to satisy the two inequalities. This would be obvious if you graphed the two inequalities.

Now there are Magic Coefficients in the final w row. Take the coefficients of the two slack variables x_{3}, x_{4} in the w row. They are $-\frac{2}{3}$ and $-\frac{1}{3}$. Now x_{3} is the slack for the inequality $x_{1}+x_{2} \leq 1$ and x_{4} is the slack for the inequality $-x_{1}-2 x_{2} \leq-3$. Now

$$
\begin{aligned}
& \frac{2}{3}\left(x_{1}+x_{2}\right) \leq \frac{2}{3} \cdot 1 \\
& \text { so } \quad \frac{2}{3} x_{1}+\frac{2}{3} x_{2} \leq \frac{2}{3}
\end{aligned}
$$

using the properties of multiplying an inequality by a positive constant. Similarly

$$
\begin{aligned}
& \frac{1}{3}\left(-x_{1}-2 x_{2}\right) \leq \frac{1}{3} \cdot-3 \\
& \text { so } \quad-\frac{1}{3} x_{1}-\frac{2}{3} x_{2} \leq-1
\end{aligned}
$$

Adding these together yields

$$
\frac{1}{3} x_{1} \leq-\frac{1}{3}
$$

which is impossible (given $x_{1} \geq 0$). So the two inequalities are infeasible.
We will explain the Magic in later work.

