MATH 441: Branch and Bound
 Richard Anstee

First we consideri a mixed integer program (MIP) which is an LP with certain variables restricted to be integers. In this problem any variables restricted to be integers are in fact forced to be $(0,1)$ variables.

If we have an Mixed Integer LP, then any version of the problem under consideration, but with fewer variables restricted to be integer than specified in the original, is considered to be a (partially) relaxed problem. In our version, any variable x_{i} that we have relaxed is still required to satisfy the equation $0 \leq x_{1} \leq 1$. Consider the following LP.

$$
\begin{array}{rrrrrrll}
\operatorname{maximize} & 10 x_{1} & +7 x_{2} & +4 x_{3} & +3 x_{4} & +x_{5} & & \\
2 x_{1} & +6 x_{2} & +x_{3} & & & +x_{6} & \leq 7 \\
2 x_{1} & -3 x_{2} & +4 x_{3} & +x_{4} & +x_{5} & & \leq 3 \\
x_{1} & & +2 x_{3} & -3 x_{4} & +x_{5} & -x_{6} & \leq-1 \\
x_{1} & +x_{2} & +x_{3} & +x_{4} & -x_{5} & \leq 3 \\
x_{j} \in\{0,1\} & \text { for } j=1,2,3,4,5, & x_{6} \geq 0 &
\end{array}
$$

(1) (Completely) Relaxed LP

$$
\begin{aligned}
& \text { maximize } 10 x_{1}+7 x_{2}+4 x_{3}+3 x_{4}+x_{5} \\
& 2 x_{1}+6 x_{2} \quad+x_{3} \quad+x_{6} \leq 7 \\
& \begin{array}{rrrrrr}
2 x_{1} & -3 x_{2} & +4 x_{3} & +x_{4} & +x_{5} & \leq 3 \\
x_{1} & & +2 x_{3} & -3 x_{4} & +x_{5} & -x_{6}
\end{array} \\
& \begin{array}{lllllll}
x_{1} & & +2 x_{3} & -3 x_{4} & +x_{5} & -x_{6} & \leq-1 \\
x_{1} & +x_{2} & +x_{3} & +x_{4} & -x_{5} & \leq 3
\end{array} \\
& 0 \leq x_{j} \leq 1 \text { for } j=1,2,3,4,5, \quad x_{6} \geq 0
\end{aligned}
$$

The optimal solution is $z^{*}=20.21, x^{*}=(1,0.72,0.49,1,0.21,0.19)$.
Branch on x_{5} (closest to 0 or 1)
(2) $x_{5}=0$ (or $\left.x_{5} \leq 0\right) \quad 0 \leq x_{j} \leq 1$ for $j=1,2,3,4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=19.45, x^{*}=(1,0.78,0.33,0.89,0,0)$.
(3) $x_{5}=1$ (or $x_{5} \geq 1$) $0 \leq x_{j} \leq 1$ for $j=1,2,3,4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=19.97, x^{*}=(1,0.7,0.27,1,1,0.55)$.
The current candidate list is (2), (3).
Select (3) and branch on x_{3}
(4) $x_{5}=1, x_{3}=0 \quad 0 \leq x_{j} \leq 1$ for $j=1,2,4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=19.83, x^{*}=(1,0.83,0,1,1,0)$.
(5) $x_{5}=1, x_{3}=1 \quad 0 \leq x_{j} \leq 1$ for $j=1,2,4, \quad x_{6} \geq 0$

This LP is infeasible.
The current candidate list is (2), (4).
Select (4) and branch on x_{2}
(6) $x_{5}=0, x_{3}=0, x_{2}=0 \quad 0 \leq x_{j} \leq 1$ for $j=1,4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=11, x^{*}=(1,0,0,0,1,3)$.
(7) $x_{5}=0, x_{3}=0, x_{2}=1 \quad 0 \leq x_{j} \leq 1$ for $j=1,4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=16, x^{*}=(0.5,1,0,1,1,0)$.
The current candidate list is (2), (7) and the current best integer solution is (6) with $z^{*}=11$.
Select (2) and branch on x_{4}
(8) $x_{5}=0, x_{4}=0 \quad 0 \leq x_{j} \leq 1$ for $j=1,2,3, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=13.73, x^{*}=(1,0.27,0.45,0,0,2.91)$.
(9) $x_{5}=0, x_{4}=1 \quad 0 \leq x_{j} \leq 1$ for $j=1,2,3, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=19.4, x^{*}=(1,0.8,2,1,0,0)$.
The current candidate list is (7), (8), (9) and the current best integer solution is (6) with $z^{*}=11$.

Select (9) and branch on x_{2}

(10) $x_{5}=0, x_{4}=1, x_{2}=0 \quad 0 \leq x_{j} \leq 1$ for $j=1,3, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=13, x^{*}=(1,0,0,1,0,0)$.
(11) $x_{5}=0, x_{4}=1, x_{2}=1 \quad 0 \leq x_{j} \leq 1$ for $j=1,3, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=15, x^{*}=(0.5,1,0,1,0,0)$.
The current candidate list is (7), (8), (11) and the current best integer solution is (10) with $z^{*}=13$.

Select (7) and branch on x_{1}

(12) $x_{5}=0, x_{3}=0, x_{2}=1, x_{1}=0 \quad 0 \leq x_{j} \leq 1$ for $j=4, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=11$ so prune this branch.
(13) $x_{5}=0, x_{3}=0, x_{2}=1, x_{1}=1 \quad 0 \leq x_{j} \leq 1$ for $j=4, \quad x_{6} \geq 0$

This LP is infeasible.
The current candidate list is (8), (11) and the current best integer solution is (10) with $z^{*}=13$.
Select (11) and branch on x_{1}
(14) $x_{5}=0, x_{4}=1, x_{2}=1, x_{1}=0 \quad 0 \leq x_{j} \leq 1$ for $j=3, \quad x_{6} \geq 0$

The optimal solution is $z^{*}=14, x^{*}=(0,1,1,1,0,0)$.
(15) $x_{5}=0, x_{4}=1, x_{2}=1, x_{1}=1 \quad 0 \leq x_{j} \leq 1$ for $j=3, \quad x_{6} \geq 0$

This LP is infeasible.
The current candidate list is (8) and the current best integer solution is (14) with $z^{*}=14$ and so we can prune (8) as well.

I though I would try another example where the variables were not forced to be 0 or 1 but more general integer variables.

$$
\begin{aligned}
& \text { maximize } 21 x_{1}+67 x_{2}+77 x_{3}+88 x_{4} \\
& x_{1}+5 x_{2}+4 x_{3} \quad+7 x_{4} \leq 30 \\
& 2 x_{1}+7 x_{2}+2.2 x_{3}+5 x_{4} \leq 31 \\
& 3 x_{1}+6 x_{2} \quad+8 x_{3} \quad+8 x_{4} \leq 55 \\
& x_{j} \geq 0 \text { and } x_{j} \in \mathbf{Z} \text { for } j=1,2,3,4
\end{aligned}
$$

(1) (Completely) Relaxed LP

$$
\begin{array}{rrrrl}
\operatorname{maximize} & 21 x_{1} & +67 x_{2} & +77 x_{3} & +88 x_{4} \\
x_{1} & +5 x_{2} & +4 x_{3} & +7 x_{4} & \leq 30 \\
2 x_{1} & +7 x_{2} & +2.2 x_{3} & +5 x_{4} & \leq 31 \\
3 x_{1} & +6 x_{2} & +8 x_{3} & +8 x_{4} & \leq 55 \\
x_{j} \geq 0 \text { for } j=1,2,3,4 &
\end{array}
$$

The optimal solution is $z^{*}=540.9, x^{*}=(0,1.25,5.94,0)$. THus we have node (1) with $z^{*}=540.9$, $x^{*}=(0,1.25,5.94,0)$.
Branch on x_{3} (non-integer closest to an integer)
(2) add $x_{3} \leq 5$

The optimal solution is $z^{*}=531.66, x^{*}=(1.66,1.66,5,0)$.
(3) add $x_{3} \geq 6$ The optimal solution is $z^{*}=540.16, x^{*}=(0,1.6,6,0)$.

The current candidate list is (2), (3).

Select (3) and branch on x_{2}

(4) $x_{2} \leq 1, x_{3} \geq 6$

The optimal solution is $z^{*}=540, x^{*}=(0,1,6, .13)$.
(5) $x_{2} \geq 2, x_{3} \geq 6$

This LP is infeasible.
The current candidate list is (2), (4).

Select (4) and branch on x_{4}

(6) $x_{4} \leq 0, x_{2} \leq 1, x_{3} \geq 6$

The optimal solution is $z^{*}=538.6, x^{*}=(0,1,6.13,0)$.
(7) $x_{4} \geq 1, x_{3}=0, x_{2}=1$

This LP is infeasible.
The current candidate list is (2), (6)
Select (6) and branch on x_{3}
(8) $x_{3} \leq 6, x_{4} \leq 0, x_{2} \leq 1, x_{3} \geq 6$

The optimal solution is $z^{*}=536, x^{*}=(.33,1,6,0)$.
(9) $x_{3} \geq 7, x_{4} \leq 0, x_{2} \leq 1, x_{3} \geq 6$

The current candidate list is (2), (8).

Select (8) and branch on x_{1}

(10) $x_{1} \leq 0, x_{3} \leq 6, x_{4} \leq 0, x_{2} \leq 1, x_{3} \geq 6$

The optimal solution is $z^{*}=529, x^{*}=(0,1,6,0)$, which has all integer values.
(11) $x_{1} \geq 1, x_{3} \leq 6, x_{4} \leq 0, x_{2} \leq 1, x_{3} \geq 6$

The optimal solution is $z^{*}=527.6, x^{*}=(1, .66,6,0)$.

The current candidate list is (2), (10), (11) and the current best integer solution is (10) with $z^{*}=529$. We prune (11) since any integer solution satisfyingthe inequalities of (11) will have $z \leq 527.6<529$.

Select (2) and branch on x_{2}

 (12) $x_{2} \leq 1, x_{3} \leq 5$The optimal solution is $z^{*}=529.7, x^{*}=(1.77,1,5, .4)$. (13) $x_{2} \geq 2, x_{3} \leq 5$

The optimal solution is $z^{*}=524, x^{*}=(3,2,4.25,0)$. We may prune this node.
The current candidate list is (12) and the current best integer solution is (10) with $z^{*}=529$.

Select (12) and branch on x_{1}

(14) $x_{1} \leq 1, x_{2} \leq 1, x_{3} \leq 5$

The optimal solution is $z^{*}=523.3, x^{*}=(1,1,5, .57)$. We may prune this node. (15) $x_{1} \geq 2, x_{2} \leq 1, x_{3} \leq 5$

The optimal solution is $z^{*}=528.37, x^{*}=(2,1,4.875, .5)$. We may prune this node.
The current candidate list is empty and so the current best integer solution is (10) with $z^{*}=529$ and we know that it is optimal.

