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Some notation

We can obtain an integer sequence a1, a2, . . . , an, . . . from a
recurrence which gives later terms in terms of previous terms and
we begin with certain initial values explicitly. The following makes
this more precise.

Proposition. Assume for each n > k , an = f (a1, a2, . . . , an−1).
Assume a1, a2, . . . , ak are given. Then this uniquely determines an
for all n > 0.

Our recurrences are usually given in terms of the previous k values,
namely an = f (an−k , an−k+1, . . . , an−1).
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Examples

Fibonacci Numbers

They are determined by the recurrence

fn = fn−1 + fn−2 f1 = f2 = 1

There is an explicit formula for fn
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Examples

Catalan Numbers

They are detemined by the recurrence

Cn =
n−1∑
i=0

CiCn−1−i C0 = 1

There is an explicit formula for Cn

Cn =
1

n + 1

(
2n

n

)
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We can use recurrences in a variety of ways. The typical way is to
obtain a recurrence and then use various results (such as
generating functions) to solve the recurrence. You can initially
think of recurrences as a kind of induction. In fact, if you
miraculously guessed the explicit formula for Cn, you could prove
the explicit formula for Cn from the recurrence for Cn using
induction on n, but it looks to be a bit of a mess.

A nicer approach in the Combinatorial book by Richard Brualdi, is
to consider some object for which both the recurrence and the
formula can be seen to hold simultaneously. Then, once proved,
you can use this in other circumstances namely when the
recurrence holds you have Catalan numbers and when you have
Catalan numbers, the recurrence holds. There are other ways to
prove this.

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences



Let g(n) denote the number of bracketings of a1, a2, . . . , an in that
order

(a1 × a2) g(2) = 1 = C1

(a1 × (a2 × a3)), ((a1 × a2)× a3) g(3) = 2 = C2

(a1 × ((a2 × a3)× a4)), (a1 × (a2 × (a3 × a4))),
((a1 × a2)× (a3 × a4)), (((a1 × a2)× a3)× a4),
(((a1 × (a2 × a3))× a4) g(4) = 5 = C3

You can check g(2) = 1 and can set g(1) = 1 (just as we take
C0 = 1). These are the Catalan numbers shifted by 1:
g(n) = Cn−1 which is a bit annoying. You can fix this in several
ways but we will just proceed with g(n) as given.
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It is fairly easy to derive a recurrence for g(n).
First g(2) = 1.
Second, consider any bracketing expression exp of a1, a2, . . . , an
and consider the final multiply, namely

exp = (exp1)× (exp2)

Each of exp1, exp2 will have at least one variable and if exp1 has k
variables, then exp2 has the remaining n − k variables. Moreover
exp1 will have variables a1, a2, . . . , ak while exp2 has
ak+1, ak+2, . . . , an. The number of choices for exp1 is g(k) and the
number of choices for exp2 is g(n − k) which yields the recurrence

g(n) =
n−1∑
k=1

g(k)g(n − k); g(2) = 1

Thus g(n + 1) = Cn because they satify the same recurrence. Of
course we still wish to verify the explicit formula.
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It turns out to be easier to count the bracketings where we allow
the variables to be in any order
Let h(n) denote the number of bracketings of a1, a2, . . . , an (in any
order)
Theorem h(n) = n! · g(n)
Proof: We note that given a bracketing of a1, a2, . . . , an in that
order, any of the n! permutations of a1, a2, . . . , an can be applied
to the expression to obtain a bracketing of a1, a2, . . . , an (in any
order).

Note that our formula above means that if we can compute h(n)
then we have computed g(n). Using g(n + 1) = Cn, we obtain the
explicit formula for Cn.
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It turns out to be easier to directly compute h(n) using the
following recurrence.

Lemma h(n) = (4n − 6)h(n − 1) for n ≥ 3.

This lemma is quite tricky and it is best to see in terms of
computation trees. We can think of any bracketing for h(n) and
expression with n − 1 multiplies sprinkled with the variables.
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We can use our Lemma as follows:
h(n) = (4n − 6)h(n − 1) = (4n − 6)(4n − 10)h(n − 2) = · · ·
· · · = (4n − 6)(4n − 10) · · · 6 · h(2).

Thus h(n) = 2n−1(2n − 3)(2n − 5) · · · 3 · 1 (using h(2) = 2)

Fill in terms top and bottom

h(n) = 2n−1 (2n − 2)(2n − 3)(2n − 4) · · · 1
(2n − 2)(2n − 4) · · · · 2

=
(2n − 2)(2n − 3)(2n − 4) · · · 1

(n − 1)(n − 2) · · · · 1
=

(2n − 2)!

(n − 1)!

So g(n) = (n − 1)!

(
2n − 2

n − 1

)
=

1

n

(
2n − 2

n − 1

)

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences



We can use our Lemma as follows:
h(n) = (4n − 6)h(n − 1) = (4n − 6)(4n − 10)h(n − 2) = · · ·
· · · = (4n − 6)(4n − 10) · · · 6 · h(2).

Thus h(n) = 2n−1(2n − 3)(2n − 5) · · · 3 · 1 (using h(2) = 2)
Fill in terms top and bottom

h(n) = 2n−1 (2n − 2)(2n − 3)(2n − 4) · · · 1
(2n − 2)(2n − 4) · · · · 2

=
(2n − 2)(2n − 3)(2n − 4) · · · 1

(n − 1)(n − 2) · · · · 1
=

(2n − 2)!

(n − 1)!

So g(n) = (n − 1)!

(
2n − 2

n − 1

)
=

1

n

(
2n − 2

n − 1

)

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences



We can use our Lemma as follows:
h(n) = (4n − 6)h(n − 1) = (4n − 6)(4n − 10)h(n − 2) = · · ·
· · · = (4n − 6)(4n − 10) · · · 6 · h(2).

Thus h(n) = 2n−1(2n − 3)(2n − 5) · · · 3 · 1 (using h(2) = 2)
Fill in terms top and bottom

h(n) = 2n−1 (2n − 2)(2n − 3)(2n − 4) · · · 1
(2n − 2)(2n − 4) · · · · 2

=
(2n − 2)(2n − 3)(2n − 4) · · · 1

(n − 1)(n − 2) · · · · 1
=

(2n − 2)!

(n − 1)!

So g(n) = (n − 1)!

(
2n − 2

n − 1

)
=

1

n

(
2n − 2

n − 1

)

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences



We can use our Lemma as follows:
h(n) = (4n − 6)h(n − 1) = (4n − 6)(4n − 10)h(n − 2) = · · ·
· · · = (4n − 6)(4n − 10) · · · 6 · h(2).

Thus h(n) = 2n−1(2n − 3)(2n − 5) · · · 3 · 1 (using h(2) = 2)
Fill in terms top and bottom

h(n) = 2n−1 (2n − 2)(2n − 3)(2n − 4) · · · 1
(2n − 2)(2n − 4) · · · · 2

=
(2n − 2)(2n − 3)(2n − 4) · · · 1

(n − 1)(n − 2) · · · · 1
=

(2n − 2)!

(n − 1)!

So g(n) = (n − 1)!

(
2n − 2

n − 1

)
=

1

n

(
2n − 2

n − 1

)

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences



To obtain the recurrence for h(n) = (4n − 6)h(n − 1) we use
induction on n. We think of this as
h(n) = (4(n− 2))h(n− 1) + 2h(n− 1). Consider an expression exp
of variables x1, x2, . . . , xn−1. We obtain 2h(n − 1) expresssions of
the form xn × exp and exp × xn which yields the term 2h(n − 1).
All have xn as one term in the ‘last’ multiply.
There are n − 2 choices of ‘×’ in exp. For each choice of ‘×’ in
exp (i.e. exp = exp1 × exp2) we have can add xn and one ‘×’ and
obtain four expressions:
((xn × exp1)× exp2), ((exp1 × xn)× exp2),
(exp1 × (xn × exp1)), (exp1 × (exp2 × xn)).
This corresponds to the term (4(n − 2)h(n − 1).
One also needs to show that this happily reverses removing xn and
one ‘×’ in the reverse of the moves above to obtain the h(n − 1)
expressions.
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Thank you for listening

Richard Anstee,UBC, Vancouver Catalan Numbers and Recurrences


