Catalan Numbers and Recurrences

Richard Anstee, UBC, Vancouver

2021
MATH 444

Some notation

We can obtain an integer sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ from a recurrence which gives later terms in terms of previous terms and we begin with certain initial values explicitly. The following makes this more precise.

Proposition. Assume for each $n>k, a_{n}=f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Assume $a_{1}, a_{2}, \ldots, a_{k}$ are given. Then this uniquely determines a_{n} for all $n>0$.

Our recurrences are usually given in terms of the previous k values, namely $a_{n}=f\left(a_{n-k}, a_{n-k+1}, \ldots, a_{n-1}\right)$.

Examples

Fibonacci Numbers
They are determined by the recurrence

$$
f_{n}=f_{n-1}+f_{n-2} \quad f_{1}=f_{2}=1
$$

There is an explicit formula for f_{n}

$$
f_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Examples

Catalan Numbers

They are detemined by the recurrence

$$
C_{n}=\sum_{i=0}^{n-1} C_{i} C_{n-1-i} \quad C_{0}=1
$$

There is an explicit formula for C_{n}

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

We can use recurrences in a variety of ways. The typical way is to obtain a recurrence and then use various results (such as generating functions) to solve the recurrence. You can initially think of recurrences as a kind of induction. In fact, if you miraculously guessed the explicit formula for C_{n}, you could prove the explicit formula for C_{n} from the recurrence for C_{n} using induction on n, but it looks to be a bit of a mess.

A nicer approach in the Combinatorial book by Richard Brualdi, is to consider some object for which both the recurrence and the formula can be seen to hold simultaneously. Then, once proved, you can use this in other circumstances namely when the recurrence holds you have Catalan numbers and when you have Catalan numbers, the recurrence holds. There are other ways to prove this.

Let $g(n)$ denote the number of bracketings of $a_{1}, a_{2}, \ldots, a_{n}$ in that order

$$
\begin{array}{ll}
\left(a_{1} \times a_{2}\right) & g(2)=1=C_{1} \\
\left(a_{1} \times\left(a_{2} \times a_{3}\right)\right),\left(\left(a_{1} \times a_{2}\right) \times a_{3}\right) & g(3)=2=C_{2} \\
\left(a_{1} \times\left(\left(a_{2} \times a_{3}\right) \times a_{4}\right)\right),\left(a_{1} \times\left(a_{2} \times\left(a_{3} \times a_{4}\right)\right)\right), & \\
\left(\left(a_{1} \times a_{2}\right) \times\left(a_{3} \times a_{4}\right)\right),\left(\left(\left(a_{1} \times a_{2}\right) \times a_{3}\right) \times a_{4}\right), & g(4)=5=C_{3} \\
\left(\left(\left(a_{1} \times\left(a_{2} \times a_{3}\right)\right) \times a_{4}\right)\right. &
\end{array}
$$

You can check $g(2)=1$ and can set $g(1)=1$ (just as we take $C_{0}=1$). These are the Catalan numbers shifted by 1 : $g(n)=C_{n-1}$ which is a bit annoying. You can fix this in several ways but we will just proceed with $g(n)$ as given.

It is fairly easy to derive a recurrence for $g(n)$.
First $g(2)=1$.
Second, consider any bracketing expression \exp of $a_{1}, a_{2}, \ldots, a_{n}$ and consider the final multiply, namely

$$
\exp =\left(\exp _{1}\right) \times\left(e^{2} p_{2}\right)
$$

Each of $\exp _{1}, \exp _{2}$ will have at least one variable and if $\exp _{1}$ has k variables, then $\exp _{2}$ has the remaining $n-k$ variables. Moreover $\exp _{1}$ will have variables $a_{1}, a_{2}, \ldots, a_{k}$ while $\exp _{2}$ has
$a_{k+1}, a_{k+2}, \ldots, a_{n}$. The number of choices for $\exp _{1}$ is $g(k)$ and the number of choices for $\exp _{2}$ is $g(n-k)$ which yields the recurrence

$$
g(n)=\sum_{k=1}^{n-1} g(k) g(n-k) ; \quad g(2)=1
$$

Thus $g(n+1)=C_{n}$ because they satify the same recurrence. Of course we still wish to verify the explicit formula.

It turns out to be easier to count the bracketings where we allow the variables to be in any order Let $h(n)$ denote the number of bracketings of $a_{1}, a_{2}, \ldots, a_{n}$ (in any order)
Theorem $h(n)=n!\cdot g(n)$
Proof: We note that given a bracketing of $a_{1}, a_{2}, \ldots, a_{n}$ in that order, any of the n ! permutations of $a_{1}, a_{2}, \ldots, a_{n}$ can be applied to the expression to obtain a bracketing of $a_{1}, a_{2}, \ldots, a_{n}$ (in any order).

Note that our formula above means that if we can compute $h(n)$ then we have computed $g(n)$. Using $g(n+1)=C_{n}$, we obtain the explicit formula for C_{n}.

It turns out to be easier to directly compute $h(n)$ using the following recurrence.

Lemma $h(n)=(4 n-6) h(n-1)$ for $n \geq 3$.
This lemma is quite tricky and it is best to see in terms of computation trees. We can think of any bracketing for $h(n)$ and expression with $n-1$ multiplies sprinkled with the variables.

We can use our Lemma as follows:
$h(n)=(4 n-6) h(n-1)=(4 n-6)(4 n-10) h(n-2)=\cdots$
$\cdots=(4 n-6)(4 n-10) \cdots 6 \cdot h(2)$.
Thus $h(n)=2^{n-1}(2 n-3)(2 n-5) \cdots 3 \cdot 1$ (using $\left.h(2)=2\right)$

We can use our Lemma as follows:
$h(n)=(4 n-6) h(n-1)=(4 n-6)(4 n-10) h(n-2)=\cdots$
$\cdots=(4 n-6)(4 n-10) \cdots 6 \cdot h(2)$.
Thus $h(n)=2^{n-1}(2 n-3)(2 n-5) \cdots 3 \cdot 1$ (using $\left.h(2)=2\right)$
Fill in terms top and bottom

$$
h(n)=2^{n-1} \frac{(2 n-2)(2 n-3)(2 n-4) \cdots 1}{(2 n-2)(2 n-4) \cdots \cdot 2}
$$

We can use our Lemma as follows:
$h(n)=(4 n-6) h(n-1)=(4 n-6)(4 n-10) h(n-2)=\cdots$
$\cdots=(4 n-6)(4 n-10) \cdots 6 \cdot h(2)$.
Thus $h(n)=2^{n-1}(2 n-3)(2 n-5) \cdots 3 \cdot 1$ (using $h(2)=2$)
Fill in terms top and bottom

$$
\begin{aligned}
& h(n)=2^{n-1} \frac{(2 n-2)(2 n-3)(2 n-4) \cdots 1}{(2 n-2)(2 n-4) \cdots \cdot 2} \\
= & \frac{(2 n-2)(2 n-3)(2 n-4) \cdots 1}{(n-1)(n-2) \cdots 1}=\frac{(2 n-2)!}{(n-1)!}
\end{aligned}
$$

We can use our Lemma as follows:
$h(n)=(4 n-6) h(n-1)=(4 n-6)(4 n-10) h(n-2)=\cdots$
$\cdots=(4 n-6)(4 n-10) \cdots 6 \cdot h(2)$.
Thus $h(n)=2^{n-1}(2 n-3)(2 n-5) \cdots 3 \cdot 1$ (using $\left.h(2)=2\right)$
Fill in terms top and bottom

$$
\begin{aligned}
& h(n)=2^{n-1} \frac{(2 n-2)(2 n-3)(2 n-4) \cdots 1}{(2 n-2)(2 n-4) \cdots \cdot 2} \\
& =\frac{(2 n-2)(2 n-3)(2 n-4) \cdots 1}{(n-1)(n-2) \cdots 1}=\frac{(2 n-2)!}{(n-1)!} \\
& \text { So } g(n)=(n-1)!\binom{2 n-2}{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}
\end{aligned}
$$

To obtain the recurrence for $h(n)=(4 n-6) h(n-1)$ we use induction on n. We think of this as
$h(n)=(4(n-2)) h(n-1)+2 h(n-1)$. Consider an expression exp of variables $x_{1}, x_{2}, \ldots, x_{n-1}$. We obtain $2 h(n-1)$ expresssions of the form $x_{n} \times \exp$ and $\exp \times x_{n}$ which yields the term $2 h(n-1)$. All have x_{n} as one term in the 'last' multiply.
There are $n-2$ choices of ' x ' in exp. For each choice of ' x ' in \exp (i.e. $\exp =\exp _{1} \times \exp _{2}$) we have can add x_{n} and one ' \times ' and obtain four expressions:
$\left(\left(x_{n} \times \exp _{1}\right) \times \exp _{2}\right)$,
$\left(\left(\exp _{1} \times x_{n}\right) \times \exp _{2}\right)$,
$\left(\exp _{1} \times\left(x_{n} \times \exp _{1}\right)\right)$,
$\left(\exp _{1} \times\left(\exp _{2} \times x_{n}\right)\right)$.
This corresponds to the term $(4(n-2) h(n-1)$.
One also needs to show that this happily reverses removing x_{n} and one ' \times ' in the reverse of the moves above to obtain the $h(n-1)$ expressions.

Thank you for listening

