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When using Sperners theorem, it is important to know that
(2n
n

)
is

a large fraction of all the 22n sets in 2[2n]. Stirling’s Appromation
gives us a good sense of this. We can use integrals to approximate
sums. Using the properties of the logarithm

ln(n!) = ln(1) + ln(2) + ln(3) + · · ·+ ln(n)

≈
∫ n

1
ln(x)dx

= n ln(n)− n + 1

This can be improved (with some work) to have a better error term

ln(n!) ≈ n ln(n)− n + (1/2) ln(2πn).

Then
n! ≈

√
2πn

(n
e

)n
.
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Thus we see that there are more subsets of [2n] of size n than you
would expect. The trivial estimate would be ≈ 1

2n2
2n based on

there being 2n choices for set sizes and imagining there are about
an equal number of sets of size k for each k . Thus we have shown
that this last statement is not true.
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