Stirling's Approximation

Richard Anstee, UBC, Vancouver

January 20, 2022

When using Sperners theorem, it is important to know that $\binom{2 n}{n}$ is a large fraction of all the $2^{2 n}$ sets in $2^{[2 n]}$. Stirling's Appromation gives us a good sense of this. We can use integrals to approximate sums. Using the properties of the logarithm

$$
\begin{aligned}
\ln (n!)=\ln (1) & +\ln (2)+\ln (3)+\cdots+\ln (n) \\
& \approx \int_{1}^{n} \ln (x) d x \\
& =n \ln (n)-n+1
\end{aligned}
$$

This can be improved (with some work) to have a better error term

$$
\ln (n!) \approx n \ln (n)-n+(1 / 2) \ln (2 \pi n)
$$

Then

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

$$
\begin{aligned}
\binom{2 n}{n} & \approx \frac{\sqrt{2 \pi 2 n}\left(\frac{2 n}{e}\right)^{2 n}}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}} \\
& =\frac{1}{\sqrt{\pi n}} \frac{2^{2 n}\left(\frac{n}{e}\right)^{2 n}}{\left(\frac{n}{e}\right)^{n}\left(\frac{n}{e}\right)^{n}} \\
& =\frac{2^{2 n}}{\sqrt{\pi n}}
\end{aligned}
$$

Thus we see that there are more subsets of $[2 n]$ of size n than you would expect. The trivial estimate would be $\approx \frac{1}{2 n} 2^{2 n}$ based on there being $2 n$ choices for set sizes and imagining there are about an equal number of sets of size k for each k. Thus we have shown that this last statement is not true.

