Math 523 Assignment \#1 (two pages) Due Wednesday January 25

1. Recall that the adjacency matrix of a graph is a symmetric $(0,1)$-matrix with a 1 in in the (i, j) position if and only if there is an edge joining i and j. A Special class of graphs can be defined as those whose graphs whose adjacency matrix has a staircase pattern e.g.

$$
\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

when the vertices are ordered by decreasing degrees $\left(\operatorname{deg}_{G}(v)=\right.$ number of edges incident with $\left.v\right)$. The staircase pattern is equivalent to the property that a 1 in position i, j implies that there are 1's in all positions to the left or above or both except for the diagonal. Show that $\Omega(n)$ bits are required to represent such graphs on n vertices $(n=|V|)$ by obtaining a lower bound of sufficient size on the number of non-isomorphic Special graphs on n vertices. Hint: two special graphs are isomorphic if and only if their ordered sequence of degrees are the same. Show that $O(n)$ bits suffice to represent such graphs on n vertices.
2. In a graph $G=(V, E)$ we define a clique C to be a set of vertices such that every pair of vertices in C is joined by an edge. The size of the clique is $|C|$. Assume $n=|V|$. If we were asked whether G has a clique of size k we could do so by testing all $\binom{n}{k} k$-sets of vertices whether they are cliques. A 'faster' approach uses fast matrix multiplication. Recall that we can multiply two $n \times n$ matrices in $O\left(n^{2.37}\right)$ using an algorithm of Coppersmith and Winograd. Let $A=\left(a_{i j}\right)$ be the $n \times n$ adjacency matrix of G where $a_{i j}=1$ if $(i, j) \in E$ and $a_{i j}=0$ otherwise. One observes that G has a clique of size 3 if and only if there is a pair i, j with the i, j entries of A^{2} being simultaneously nonzero.
a) Indicate a $O\left(m^{k}\right)$ algorithm for testing if G has a clique of size k
b) Use fast matrix multiplication to test if G has a clique of size 3 in time $O\left(m^{2.37}\right)$.
c) Create a $O\left(n^{2.38 k}\right)$ algorithm for testing if G has a clique of size $3 k$ by creating a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with vertices V^{\prime} being all k-sets of vertices (hence $\left|V^{\prime}\right|=\binom{n}{k}$) and join two k-sets A, B in G^{\prime} if $A \cap B=\emptyset$ and all edges $\{(i, j): i \in A, j \in B\} \subseteq E$. What does a triangle in G^{\prime} correspond to in G ?
3.
a) Prove that the following algorithm for the greatest common factor is in P . The algorithm computes the gcd of two numbers m, n where we may assume $m \leq n$.

$$
\operatorname{gcd}(m, n)=\left\{\begin{array}{cl}
n & \text { if } m=0 \\
\operatorname{gcd}\left(n-m\left\lfloor\frac{n}{m}\right\rfloor, m\right) & \text { otherwise }
\end{array}\right.
$$

You can show that the first argument of gcd drops by a factor of at least 2 after two iterations and hence show that the algorithm is in P .
b) Prove that exact Gauss-Jordan elimination applied to integer data, when after each pivot you reduce the fractions to lowest terms using the gcd function above, is in P. Gauss-Jordan is a recursive algorithm. Applied to a matrix A, at the i th stage the matrix has been reduced to one with the first $i-1$ columns being the first $i-1$ columns of the identity. Onet finds the i th non-zero column of A_{i} and does a column interchange to make it the i th column. Then it interchanges rows if necessary to have a non-zero entry in that column in the i th row. Then it does a pivot (some elementary row operations of adding appropriate multiples of the i th row to the other rows) to obtain A_{i+1}. These operations can be viewed as a change of column basis when we start with the matrix $[A \mid I]$.

