Math 523

Assignment #5

Due Wednesday April 6

1. Let G = (V, E) be a graph with no loops. Arbitrarily orient the edges to obtain a directed graph D = (V, A). Form a node-arc incidence matrix

$$A_D = (a_{ij}) \text{ where } a_{ij} = \begin{cases} 1 & \text{head}(\text{arc } j) = i \\ -1 & \text{tail}(\text{arc } j) = i \\ 0 & \text{otherwise} \end{cases}$$

Verify that a set of columns in A_D that are linearly dependent correspond to a set of edges $E' \subseteq E$ which contain at least one cycle formed by the edges E'.

2. A branching is a (out)directed tree rooted at a node r. That is to say it contains directed paths from the root r to each node in the tree. Explain how to create two matroids M_1, M_2 from a directed graph D = (V, A) such that any common independent set of size |V| - 1 is a branching rooted at r. Now assume D has no branching. How can we use the matroid intersection theorem ? Theorem. $\max_{I \in \mathcal{I}_1 \cap \mathcal{I}_2} |I| = \min_{U \subseteq E} (r_1(U) + r_2(E - U))$

Relate it to the standard graph theory result about reachablity that follows from considering all the vertices reachable by directed paths from r in D.

3. Let G = (V, E) be a graph. Let \mathcal{M} be the set of all matchings.

a) Let

 $\mathcal{I} = \{ I \subseteq V : \text{ there exists a matching } M \in \mathcal{M} \text{ with } I \subseteq V(M) \}$

Show that (E, \mathcal{I}) is a matroid. Berge's theorem?

b) Let G = (V, E) have vertex weights $w : V \to \mathbb{Z}^+$. Indicate how to find a set of vertices $U \subseteq V$ that maximizes $\sum_{v \in U} w(v)$ over all sets of vertices U that are *matching covered*; namely there is a matching $M \in \mathcal{M}$ with $U \subseteq V(M)$.

4. The following two graphs on the same set E of edges yields a pair of graphic matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$. You may assume $I = \{e2, e7, e9\}$ is w-maximal in $\mathcal{I}_1^3 \cap \mathcal{I}_2^3$. Recall our definition of $D_{M_1,M_2}(I)$ to be the directed graph on E such that for $x \in I$ and $y \in E \setminus I$, there is an edge $x \to y$ if $I \setminus x + y \in \mathcal{I}_1$ and an edge $x \leftarrow y$ if $I \setminus x + y \in \mathcal{I}_2$. We have $X_1 = \{e \in E : I + e \in \mathcal{I}_1\}$ and $X_2 = \{e \in E : I + e \in \mathcal{I}_2\}$. Using our auxiliary graph $D_{M_1,M_2}(I)$, find a w-maximal common independent set $I' \in \mathcal{I}_1^4 \cap \mathcal{I}_2^4$ with weights as below.

e	1	2	3	4	5	6	7	8	9
w(e)	0	7	8	0	0	5	9	6	10

