1. Let $G=(V, E)$ be a graph with no loops. Arbitrarily orient the edges to obtain a directed graph $D=(V, A)$. Form a node-arc incidence matrix

$$
A_{D}=\left(a_{i j}\right) \text { where } a_{i j}= \begin{cases}1 & \operatorname{head}(\operatorname{arc} j)=i \\ -1 & \text { tail }(\operatorname{arc} j)=i \\ 0 & \text { otherwise }\end{cases}
$$

Verify that a set of columns in A_{D} that are linearly dependent correspond to a set of edges $E^{\prime} \subseteq E$ which contain at least one cycle formed by the edges E^{\prime}.
2. A branching is a (out)directed tree rooted at a node r. That is to say it contains directed paths from the root r to each node in the tree. Explain how to create two matroids M_{1}, M_{2} from a directed graph $D=(V, A)$ such that any common independent set of size $|V|-1$ is a branching rooted at r. Now assume D has no branching. How can we use the matroid intersection theorem ?

Theorem. $\max _{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}}|I|=\min _{U \subseteq E}\left(r_{1}(U)+r_{2}(E-U)\right)$
Relate it to the standard graph theory result about reachablity that follows from considering all the vertices reachable by directed paths from r in D.
3. Let $G=(V, E)$ be a graph. Let \mathcal{M} be the set of all matchings.
a) Let

$$
\mathcal{I}=\{I \subseteq V: \text { there exists a matching } M \in \mathcal{M} \text { with } I \subseteq V(M)\}
$$

Show that (E, \mathcal{I}) is a matroid. Berge's theorem?
b) Let $G=(V, E)$ have vertex weights $w: V \rightarrow \mathcal{Z}^{+}$. Indicate how to find a set of vertices $U \subseteq V$ that maximizes $\sum_{v \in U} w(v)$ over all sets of vertices U that are matching covered; namely there is a matching $M \in \mathcal{M}$ with $U \subseteq V(M)$.
4. The following two graphs on the same set E of edges yields a pair of graphic matroids $M_{1}=$ $\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$. You may assume $I=\{e 2, e 7, e 9\}$ is w-maximal in $\mathcal{I}_{1}^{3} \cap \mathcal{I}_{2}^{3}$. Recall our definition of $D_{M_{1}, M_{2}}(I)$ to be the directed graph on E such that for $x \in I$ and $y \in E \backslash I$, there is an edge $x \rightarrow y$ if $I \backslash x+y \in \mathcal{I}_{1}$ and an edge $x \leftarrow y$ if $I \backslash x+y \in \mathcal{I}_{2}$. We have $X_{1}=\left\{e \in E: I+e \in \mathcal{I}_{1}\right\}$ and $X_{2}=\left\{e \in E: I+e \in \mathcal{I}_{2}\right\}$. Using our auxiliary graph $D_{M_{1}, M_{2}}(I)$, find a w-maximal common independent set $I^{\prime} \in \mathcal{I}_{1}^{4} \cap \mathcal{I}_{2}^{4}$ with weights as below.

e	1	2	3	4	5	6	7	8	9
$w(e)$	0	7	8	0	0	5	9	6	10

