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Introduction

I have worked with a number of coauthors in this area: Farzin
Barekat, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan
Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash,
Connor Meehan, U.S.R. Murty, Miguel Raggi and Attila Sali but
there are works of other authors (some much older, some recent)
impinging on this problem as well. For example, the definition of
VC -dimension uses a forbidden configuration.

Survey at www.math.ubc.ca/∼anstee
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Consider the following family of subsets of {1, 2, 3, 4}:
A =

{
∅, {1, 2, 4}, {1, 4}, {1, 2}, {1, 2, 3}, {1, 3}

}
The incidence matrix A of the family A of subsets of {1, 2, 3, 4} is:

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0


Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

Definition We define ‖A‖ to be the number of columns in A.
‖A‖ = 6 = |A|
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Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
∈ A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0



We consider the property of forbidding a configuration F in A.

Definition Let

forb(m,F )= maxA{‖A‖ : A m-rowed simple, no configuration F}
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Some Main Results

Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

When a matrix A has a copy of Kk on some k-set of rows S , then
we say that A shatters S . The results of Vapnik and Chervonenkis
were for application in Applied Probability, in Learning Theory.
One defines A to have VC-dimension k if k is the maximum
cardinality of a shattered set in A. There are applications, e.g. a
Computational Geometry result of Matoušek for which the
geometric construction is verified to have VC-dimension at most 6.
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One well used result about VC-dimension involves the following.
Let S ⊂ [m] be a transversal of A if each column of A has at least
one 1 in a row of S . Seeking a minimum transversal, we let x be
the (0,1)-incidence vector of S , and compute:

τ = min
{

1 · x subject to ATx ≥ 1, x ∈ {0, 1}m
}
.

The natural fractional problem is:

τ∗ = min
{

1 · x subject to ATx ≥ 1, x ≥ 0
}
.

Theorem (Haussler and Welzl 87) If A has VC-dimension k then
τ ≤ 16kτ∗ log(kτ∗).
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Let sh(A) = {S ⊆ [m] : A shatters S}

e.g.

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0


sh(A) = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}}

So |sh(A)| = 7 ≥ 6 = ‖A‖
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Let sh(A) = {S ⊆ [m] : A shatters S}

Theorem (Pajor 85) Let A be simple. Then |sh(A)| ≥ ‖A‖.
Proof: Decompose A as follows:

A =

[
0 0 · · · 0 1 1 · · · 1

A0 A1

]

‖A‖ = ‖A0‖+ ‖A1‖.
By induction |sh(A0)| ≥ ‖A0‖ and |sh(A1)| ≥ ‖A1‖.
|sh(A0) ∪ sh(A1)| = |sh(A0)|+ |sh(A1)| − |sh(A0) ∩ sh(A1)|
If S ∈ sh(A0) ∩ sh(A1), then 1 ∪ S ∈ sh(A).
|sh(A)| ≥ |sh(A0)|+ |sh(A1)|.
Hence |sh(A)| ≥ ‖A‖.
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Remark If A shatters S then A shatters any subset of S .

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Proof: Let A be m-rowed and have no Kk .
Then A shatters no k-set.

Then sh(A) can only contain sets of size k − 1 or smaller.
Then

‖A‖ ≤ |sh(A)| ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.
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Main Bounds

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

Corollary Let F be a k × ` simple matrix. Then
forb(m,F ) = O(mk−1).

Theorem (Füredi 83). Let F be a k × ` matrix. Then
forb(m,F ) = O(mk).

Problem Given F , can we predict the behaviour of forb(m,F )?
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Quadratic Bounds

What F have the property that forb(m,F ) is Θ(m2)? The minimal
F which yield quadratic bounds are the following:

[
0 0
0 0

]
or

[
1 1
1 1

]
or

[
0 0 0 1 1 1
0 1 1 0 0 1

]
or

0
0
0

 or

1 0 0
0 1 0
0 0 1

 or

0 1 1
1 0 1
1 1 0

 or

1 0 1 0
0 1 0 1
0 0 1 1

 or

1
1
1



or


0 1
0 1
1 0
1 0

 .
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[
0 0 0 1 1 1
0 1 1 0 0 1

]
/∈ I × I c
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Product Construction: Building Blocks

The building blocks of our product constructions are I , I c and T :

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I c4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , T4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
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A Product Construction

Definition Given an m1 × n1 matrix A and a m2 × n2 matrix B we
define the product A× B as the (m1 + m2)× (n1n2) matrix
consisting of all n1n2 possible columns formed from placing a
column of A on top of a column of B. If A, B are simple, then
A× B is simple. (A, Griggs, Sali 97)

1 0 0
0 1 0
0 0 1


I3

×

0 1 1
1 0 1
1 1 0


I c3

=



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0
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1 0 0
0 1 0
0 0 1


I3

×

0 1 1
1 0 1
1 1 0


I c3

=



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0


e.g. F =

[
0 0 0 1 1 1
0 1 1 0 0 1

]
/∈ I × I c .

Im/2 × I cm/2 is an m ×m2/4 simple matrix avoiding F ,

so forb(m,F ) is Ω(m2).

(A, Ferguson, Sali 01 forb(m,F ) = bm2

4 c+
(m
1

)
+
(m
0

)
)
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e.g. F =

[
1 1
1 1

]
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Im/2 × Im/2 is an m ×m2/4 simple matrix avoiding F ,
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(forb(m,F ) =

(m
2

)
+
(m
1

)
+
(m
0

)
)
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The result of Füredi ensures all 2-rowed F have forb(m,F ) being
O(m2).

A and Sali 05 conjecture that, for any F , we can determine
forb(m,F ) asymptotically by using the asymptotically best product
construction whose product terms are I ,I c or T .
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F =


0 1
0 1
1 0
1 0

 /∈ I × T
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1 0 0
0 1 0
0 0 1


I3

×

1 1 1
0 1 1
0 0 1


T3

=



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1



F =


0 1
0 1
1 0
1 0

 /∈ I × T .

Im/2 × Tm/2 is an m ×m2/4 simple matrix avoiding F and so
forb(m,F ) is Ω(m2).
(Frankl, Furedi, Pach 87 forb(m,F ) =

(m
2

)
+ 2m − 1)
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A 3-rowed F with a quadratic bound

Definition Let t ·M be the matrix [M M · · ·M] consisting of t
copies of M placed side by side.

Let F3(t) =

 0
0
0

t ·

0 0 0 1 1
0 1 1 0 0
1 0 1 0 1

 .
Theorem (A, Sali 05) forb(m,F3(t)) is Θ(m2).

The proof uses the standard directed graph decomposition and
clever arguments.
The proof for the general k-rowed generalization of F3(t) uses
Linear Algebra (A and Fleming 11).
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A 4-rowed F with a quadratic bound

Using a result of A and Fleming 10, there are three simple
column-maximal 4-rowed F for which forb(m,F ) is quadratic.
Here is one example:

F8 =


1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 1 1 1
0 0 1 1 0 0


How can we repeat columns in F8 and still have a quadratic bound?
We note that repeating either the column of sum 1 or the column
of sum 3 will result in a cubic lower bound. Thus we only consider
taking multiple copies of the columns of sum 2.

For a fixed t, let

F8(t) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·


1 0
0 1
1 1
0 0
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F8(t) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·


1 0
0 1
1 1
0 0




Theorem (A, Raggi, Sali 12) Let t be given. Then forb(m,F8(t))
is Θ(m2). Moreover F8(t) is a boundary case, namely for any
column α not already present t times in F8(t), then
forb(m, [F8(t)|α]) is Ω(m3).

The proof of the upper bound is currently a rather complicated
induction with some directed graph arguments.
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A 5-rowed Configuration with Quadratic bound

The Conjecture predicts nine 5-rowed simple matrices F to be
boundary cases, namely forb(m,F ) is predicted to be Θ(m2) and
for any column α we have forb(m, [F |α]) being Ω(m3). We have
handled the following case.

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0


Theorem (A, Raggi, Sali 11) forb(m,F7) is Θ(m2). Moreover F7

is a boundary case, namely for any column α, then forb(m, [F7|α])
is Ω(m3).

The proof is currently a rather complicated induction.
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All 6-rowed Configurations with Quadratic Bounds

G6×3 =



1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


Theorem (A,Raggi,Sali 11) forb(m,G6×3) is Θ(m2). Moreover
G6×3 is a boundary case, namely for any column α, then
forb(m, [G6×3|α]) is Ω(m3). In fact if F is not a configuration in
G6×3, then forb(m,F ) is Ω(m3).

Proof: We use induction and the bound for F7.

Richard Anstee,UBC, Vancouver Forbidden Configurations



Covering Arrays (in transposed notation)

Let (
[m]

k

)
denote all k-sets of an m-set: [m] = {1, 2, . . .m}

A covering array of strength k on m elements is an m-rowed
matrix A so that (

[m]

k

)
⊆ sh(A).

Alternatively

for every S ⊆
(

[m]

k

)
, A|S has Kk .

The typical question would be to minimize the number of columns
required (given m rows) in order to have a covering array of
strength k .

CAN(m, k) would be the notation for this minimum which is
usually given as CAN(k , t) with different choice of variables.
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We can generalize slightly:

req(m,F ) = minA

{
‖A‖ : A is m-rowed and simple;

for all S ∈
([m]

k

)
, A|S has F

}
.

So for covering arrays in general we are interested in
CAN(m, k) = req(m,Kk).

Theorem (Kleitman and Spencer 73) Let k be given. Then
req(m,Kk) = Θ(log m).

i.e. for t fixed, CAN(k , t) is Θ(log k)
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Lucia Moura and Brett Stevens have done substantial
investigations of Covering Arrays. Obtaining exact or near exact
bounds, rather than asymptotic bounds, is one goal. Fundamental
Extremal Set theory results such as Erdős-Ko-Rado are helpful.
Applications to fault testing exist. There are variants where we
choose a different family of subsets than than

([m]
k

)
to be

contained in sh(A). Also one might consider forbidding certain
things on some subsets of rows.
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Let 1k0` denote the (k + `)× 1 column of k 1’s on top of ` 0’s.

An application for forbidden configurations is the following.

Let F = 1101 × Kk−2 =

 1 1 · · · 1
0 0 · · · 0

Kk−2

.
Let A be a k-rowed simple matrix with no configuration F .
Consider Kk\A, namely what we must delete in order to avoid F .
Then for every 2-set of rows S ⊆

([k]
2

)
, I2 is a configuration in the

set of rows S of Kk\A. Thus
forb(k , 1101 × Kk−2) = 2k − req(k, I2).

Lemma (A and Meehan 11) Let k , p, q be given with p + q ≤ k .
Then forb(k , 1p0q × Kk−(p+q)) = 2k − req(k ,Kp

p+q).

A and Meehan use this lemma to establish a base case for an
induction argument that establishes forb(m, 1p0q × Kk−(p+q)) for
all m.
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Critical Substructures

Definition A critical substructure of a configuration F is a
minimal configuration F ′ contained in F such that

forb(m,F ′) = forb(m,F ).

A critical substructure F ′ has an associated construction avoiding
it that yields a lower bound on forb(m,F ′).
Some other argument provides the upper bound for forb(m,F ).
When F ′ is a configuration in F ′′ and F ′′ is a configuration in F ,
we deduce that

forb(m,F ′) = forb(m,F ′′) = forb(m,F ).
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Critical Substructures for K4 (A, Raggi 11)

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).
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We can extend K4 and yet have the same bound

[K4|1202] =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0


Theorem (A., Meehan 11) For m ≥ 5, we have
forb(m, [K4|1202]) = forb(m,K4).

We expect in fact that we could add many copies of the column
1202 and obtain the same bound, albeit for larger values of m.
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We have a conjecture which asserts that among the asymptotically
best constructions are those from our products of I , I c ,T . We can
determine the asymptotic behaviour of forb(m,F ) by searching our
product constructions for those which avoid F .
To complete the quadratic bounds there are ten more cases.
Two are similar to F8(t) and eight are similar to F7.
We need more general arguments!
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THANKS to the organizers, Daniel Panario, Lucia Moura,
and Brett Stevens!
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Theorem (A, Füredi 86) Let k , t be given.

forb(m, t · Kk) = forb(m, t · 1k)

≤ t − 2

k + 1

(
m

k

)
+

(
m

k

)
+

(
m

k − 1

)
+ · · ·

(
m

0

)
with equality if a certain k-design with blocksize k + 1 exists.
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Let E1 =

[
1
1

]
,E2 =

[
0
0

]
,E3 =

[
1 0
0 1

]
.

Theorem (A, Fleming 10) Let F be a k × ` simple matrix such
that there is a pair of rows with no configuration E1 and there is a
pair of rows with no configuration E2 and there is a pair of rows
with no configuration E3. Then forb(m,F ) is O(mk−2).

Note that F1 =

1 0 1 0
0 1 1 1
0 0 0 1

 has no E1 on rows 1,3, no E2

on rows 1,2 and no E3 on rows 2,3. Thus forb(m,F1) is O(m).
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Definition E1 =

[
1
1

]
,E2 =

[
0
0

]
,E3 =

[
1 0
0 1

]
.

Theorem (A, Fleming 10) Let E be given with E ∈ {E1,E2,E3}.
Let F be a k × ` simple matrix with the property that every pair of
rows contains the configuration E. Then forb(m,F ) = Θ(mk−1).

F2 =

1 0 1 0
0 1 0 1
0 0 1 1

 has E3 on rows 1,2.

Note that F2 has E3 on every pair of rows hence forb(m,F2) is
Θ(m2) (A, Griggs, Sali 97).
In particular, this means F2 /∈ T × T which is the construction to
achieve the bound.
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Boundary cases k-rowed F with bounds θ(mk−1)

Let B be a k × (k + 1) matrix which has one column of each
column sum. Given two matrices C ,D, let C\D denote the matrix
obtained from C by deleting any columns of D that are in C (i.e.
set difference). Let

FB(t) = [Kk |t · [Kk\B]].

Theorem (A, Griggs, Sali 97, A, Sali 05,
A, Fleming, Füredi, Sali 05)
Let t, B be given. Then forb(m,FB(t)) is Θ(mk−1).

The difficult problem here was the bound although induction works.
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Let D be the k × (2k − 2k−2 − 1) simple matrix with all columns
of sum at least 1 that do not simultaneously have 1’s in rows 1 and
2. We take FD(t) = [0k | (t + 1) · D] which for k = 4 becomes

FD(t) =


0
0
0
0

(t + 1) ·


0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1




Theorem (A, Sali 05 (for k = 3), A, Fleming 11)
Let t be given. Then forb(m,FD(t)) is Θ(mk−1).

The argument used standard results for directed graphs, indicator
polynomials and a linear algebra rank argument.
Theorem Let k be given and assume F is a k-rowed configuration
which is not a configuration in FB(t) for any choice of B as a
k × (k + 1) simple matrix with one column of each column sum
and not in FD(t) or FD(t)c , for any t. Then forb(m,F ) is Θ(mk).
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