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Introduction

This talk is loosely based on a 1965 AMS paper of W.T. Tutte of
the same title. Bill Tutte was first described to me as the ‘King’.
Some called him Mr. Graph Theory for his pioneering work. One
obituary described Paul Erdős, Claude Berge and Bill Tutte as the
three most important figures in Graph Theory in the 20th century.
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W.T. Tutte, 1917-2002
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He entered Cambridge University in 1935, majoring in Chemistry.
He also had an interest in mathematical problems, strong enough
to make him join the Trinity Mathematical Society. He formed a
close bond with three other members of the Society: Leonard
Brooks, Cedric Smith and Arthur Stone. Each was destined to
make his mark on Graph Theory. The four of them collaborated on
the problem of squaring the square, i.e., partitioning a square into
unequal smaller squares, publishing in 1940, ‘The Dissection of
Rectangles into Squares’.
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‘Tutte was a graduate student in Chemistry at Cambridge
University in England when, in January 1941, he was asked by his
Tutor to go to Bletchley Park, the now legendary organization of
code-breakers of Britain. Many have read of the successes which
they had there in deciphering the codes produced by the machines
called Enigma. In fact, that success was with the naval and air
force versions; the army version of Enigma proved to be more
resistant to analysis. Since they could not always read army
Enigma, they tried to read the machine-cipher named FISH, which
was used only by the Army High Command. Tutte’s great
contribution was to uncover, from samples of the messages alone,
the structure of the machines which generated these FISH ciphers.
This led to the decipherment of these codes on a regular basis.’
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The problem the undergraduates considered was whether you could
dissect a square into smaller squares all of different sizes. The
problem came from an 1931 edition of ‘The Canterbury Puzzles
and other curious problems’ by Dudeney. The undergraduates
worked for a period 1934-1938 on the problem and came out with
a solution in their 1940 paper ‘Dissections of Rectangles into
Squares’, published in the Duke Mathematical Journal. They were
scooped by Sprague by 1 year but their paper had a multitude of
new results that led to much later work.

Sprague’s squared square
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I was introduced to some aspects of this problem in Grade 11 at a
Math contest lecture! That started me down the path to research
in Discrete Mathematics.
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some transparencies
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Given the graph one might hope to discover the sizes of squares
the edge correspond to by having flow in equal flow out at every
node except the top and bottom nodes. Tutte and his fellow
undergrads used the following ideas, perhaps from their classes.
Electricity obeys the equation V = IR where V is the voltage drop
and I the current and R the resistance. If we assume the resistance
is 1, then the current is the voltage drop. Thus if we think of an
edge i → j as a wire having resistance 1 with voltage vi at i and
voltage vj at j , then the current from i to j is vi − vj .
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We let A = (aij) denote the n × n matrix with

aij =







d(i) if i = j

−1 if i 6= j , i and j are joined
0 if i 6= j , i and j are not joined

We note that A is a symmetric matrix and more importantly each
row and column sum is 0 so that, for example, the sum of the
columns is the zero vector. (It is sometimes called the Laplacian).
For our example

A =

















2 −1 −1 0 0 0
−1 3 0 −1 −1 0
−1 0 3 −1 0 −1

0 −1 −1 4 −1 −1
0 −1 0 −1 3 −1
0 0 −1 −1 −1 3
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We imagine a battery attached to our network of unit resistance
wires with a potential introduced across the two nodes 1, n. Let vi

denote the unknown potential at node i . The net flow of electricity
into a node i can be computed as

∑

j

aij(vj − vi) =
∑

j

aijvj using
∑

j

aij = 0.

Imagining that the first node 1 is the top node or source of the
electricity and node n is the bottom node or sink for the electricity,
Kirchoff’s laws give us

∑

j

aijvj =







0 m /∈ {i , j}
I j = 1
−I j = n
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∑

j

aijvj =







0 m /∈ {i , j}
I j = 1
−I j = n

This is n equations in n unknown potentials, but one equation is
redundant and we can drop the first equation and we can also add
a constant to the potentials so that vq = 0 and hence drop the
variable vq. We then have n − 1 equations in n − 1 variables. Then
Cramer’s rule lets us solve for the currents (the square sizes) using

vp − vq = vp =
det(A1n with pth column replaced by column α)

det(A1q)

where α =











0
...
0
−I











Hence vp − vq = vp =
(−1)f (p,q)I det((A1q)np)

det(A1q)
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Hence vp − vq = vp =
(−1)f (p,q)I det((A1q)np)

det(A1q)

Now in order for Cramer’s rule to work you need det(A1n) 6= 0 and
then we can set I = det(A1n) in order to end up with square sizes
being integers.

Remarkably one can show that

(−1)i+j det(Aij) = (−1)r+s det(Ars)

for any choices i , j , r , s which follows from the fact that the row
and column sums of A are 0. In addition (−1)ij det(Aij) counts the
number of spanning trees in the graph and hence is nonzero.
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For our example

A =

















2 −1 −1 0 0 0
−1 3 0 −1 −1 0
−1 0 3 −1 0 −1

0 −1 −1 4 −1 −1
0 −1 0 −1 3 −1
0 0 −1 −1 −1 3
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add column1 to column

det(A35) = det

















−2 −1 −1 −0 0 −0
−1 −3 −0 −1 −1 −0
−1 −0 −3 −1 −0 −1
−0 −1 −1 −4 −1 −1
−0 −1 −0 −1 3 −1
−0 −0 −1 −1 −1 −3

















Column 1 is now the negative of column 5 so
(−1)3+5 det(A35) = (−1)3+1 det(A31)

A31 =

2

6

6

6

6

6

6

4

−2 −1 −1 −0 −0 −0

−1 −3 −0 −1 −1 −0

−1 −0 −3 −1 −0 −1

−0 −1 −1 −4 −1 −1

−0 −1 −0 −1 3 −1

−0 −0 −1 −1 −1 −3

3

7

7

7

7

7

7

5
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add column 2 to column 1

det(A35) = det

















−1 −1 −1 −0 0 −0
−2 −3 −0 −1 −1 −0
−1 −0 −3 −1 −0 −1
−1 −1 −1 −4 −1 −1
−1 −1 −0 −1 3 −1
−0 −0 −1 −1 −1 −3

















Column 1 is now the negative of column 5 so
(−1)3+5 det(A35) = (−1)3+1 det(A31)

A31 =

2

6

6

6

6

6

6

4

−2 −1 −1 −0 −0 −0

−1 −3 −0 −1 −1 −0

−1 −0 −3 −1 −0 −1

−0 −1 −1 −4 −1 −1

−0 −1 −0 −1 3 −1

−0 −0 −1 −1 −1 −3

3

7

7

7

7

7

7

5
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add columns 2,3 to column 1

det(A35) = det

















−0 −1 −1 −0 0 −0
−2 −3 −0 −1 −1 −0
−2 −0 −3 −1 −0 −1
−2 −1 −1 −4 −1 −1
−1 −1 −0 −1 3 −1
−1 −0 −1 −1 −1 −3

















Column 1 is now the negative of column 5 so
(−1)3+5 det(A35) = (−1)3+1 det(A31)

A31 =

2

6

6

6

6

6

6

4

−2 −1 −1 −0 −0 −0

−1 −3 −0 −1 −1 −0

−1 −0 −3 −1 −0 −1

−0 −1 −1 −4 −1 −1

−0 −1 −0 −1 3 −1

−0 −0 −1 −1 −1 −3

3

7

7

7

7

7

7

5
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add columns 2,3,4 to column 1

det(A35) = det

















−0 −1 −1 −0 0 −0
−1 −3 −0 −1 −1 −0
−1 −0 −3 −1 −0 −1
−2 −1 −1 −4 −1 −1
−2 −1 −0 −1 3 −1
−2 −0 −1 −1 −1 −3

















Column 1 is now the negative of column 5 so
(−1)3+5 det(A35) = (−1)3+1 det(A31)

A31 =

2

6

6

6

6

6

6

4

−2 −1 −1 −0 −0 −0

−1 −3 −0 −1 −1 −0

−1 −0 −3 −1 −0 −1

−0 −1 −1 −4 −1 −1

−0 −1 −0 −1 3 −1

−0 −0 −1 −1 −1 −3

3

7

7

7

7

7

7

5
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add columns 2,3,4,6 to column 1

det(A35) = det

















−0 −1 −1 −0 0 −0
−1 −3 −0 −1 −1 −0
−0 −0 −3 −1 −0 −1
−1 −1 −1 −4 −1 −1
−3 −1 −0 −1 3 −1
−1 −0 −1 −1 −1 −3

















Column 1 is now the negative of column 5 so
(−1)3+5 det(A35) = (−1)3+1 det(A31)

A31 =

2

6

6

6

6

6

6

4

−2 −1 −1 −0 −0 −0

−1 −3 −0 −1 −1 −0

−1 −0 −3 −1 −0 −1

−0 −1 −1 −4 −1 −1

−0 −1 −0 −1 3 −1

−0 −0 −1 −1 −1 −3

3

7

7

7

7

7

7

5
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For this example (−1)i+j det(Aij) = 66 and Cramer’s rule, with
I = 66, yields square sizes 36,30,28,20,18,16,14,8,2. We of course
divide by the gcd to get the square sizes.
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A 13 square example made into a jigsaw puzzle by Brooks.

A 13 square example assembled by Brooks’ mother from the pieces!
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First 13 square example and its electrical network.

Second 13 square example and its electrical network.
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some examples of squares found by the four students
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Willcocks Square 1948. For a number of years this was the squared
square of the fewest number of squares but was viewed as slightly
flawed because in contained a smaller squared rectangle (a
compound square).
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The perfect square was discovered by Duijvestijn in 1978. This was
the result of much effort over the years to catalog all perfect
rectangles of up to so many squares (and hence graphs on up to so
many edges). Duijvestijn verified that this was the unique perfect
square on up to 21 squares. Bouwkamp and Duijvestijn (1994)
have actually catalogued all perfect squares of up to 26 squares. It
is amazing that they are rare and yet not so rare that you have a
hope of finding them.
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