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Introduction

I have worked with a number of coauthors in this area: Farzin
Barekat, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan
Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash,
Connor Meehan, U.S.R. Murty, Miguel Raggi and Attila Sali but
there are works of other authors (some much older, some recent)
impinging on this problem as well. For example, the definition of
VC -dimension uses a forbidden configuration.

Survey at www.math.ubc.ca/∼anstee
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An Elementary Extremal Problem

[m] = {1, 2, . . . ,m}
2[m] = {A : A ⊆ [m]}

Theorem If F ⊆ 2[m], then

|F| ≤ 2m.

Definition We say F ⊆ 2[m] is intersecting if for every pair
A,B ∈ F , we have |A ∩ B| ≥ 1.

Theorem If F ⊆ 2[m] and F is intersecting, then

|F| ≤ 2m−1.
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A foundational result in Extremal Graph Theory is as follows. Let
ex(m,G ) denote the maximum number of edges in a simple graph
on m vertices such that there is no subgraph G .
Theorem (Erdős, Stone, Simonovits 46, 66) Let G be a simple
graph. Then

lim
m→∞

ex(m,G )/

(
m

2

)
= 1− 1

χ(G )− 1
.

The Turán graph T (m, k) on m vertices are formed by
partitioning m vertices into k nearly equal sets and joining any pair
of vertices in different sets results in a graph of many edges that
requires k colours. Thus if χ(G ) = k + 1, then G is not a
subgraph of T (m, k), i.e. ex(m,G ) ≥ |E (T (m, k))|
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Let ∆ denote the triangle on 3 vertices.

Theorem (Mantel 1907) ex(m,∆) = |T (m, 2)| = bm2

4 c
Note χ(∆) = 3. If we consider a graph H consisting of two disjoint
copies of ∆ then χ(H) = 3 and ex(m,H) > ex(m,∆). Yet

lim
m→∞

ex(m,H)/

(
m

2

)
= 1− 1

3− 1
= 1/2.

Theorem (Turán 41) Let G denote the clique on k vertices where
every pair of vertices are joined. Then
ex(m,G ) = |E (T (m, k − 1))|.
Note χ(G ) = k and

lim
m→∞

|E (T (m, k − 1))|/
(

m

2

)
= 1− 1

k − 1
=

k − 2

k − 1
.
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We consider one possible generalization of the problem:
from graphs to hypergraphs, and subgraphs to subhypergraphs.
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Hypergraphs → Simple Matrices

Consider a hypergraph H with vertices [4] = {1, 2, 3, 4} and with
the following family of subsets as edges :

A =
{
∅, {1, 2, 4}, {1, 4}, {1, 2}, {1, 2, 3}, {1, 3}

}
⊆ 2[4]

The incidence matrix A of the family A ⊆ 2[4] is:

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0



Definition We say that a matrix A is simple if it is a (0,1)-matrix
with no repeated columns.

Definition We define ‖A‖ to be the number of columns in A.
‖A‖ = 6 = |A|
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Subhypergraphs → Configurations

Definition Given a matrix F , we say that A has F as a
configuration if there is a submatrix of A which is a row and
column permutation of F .

F =

[
0 0 1 1
0 1 0 1

]
∈ A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0
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ex(m,G )→ forb(m,F )

We consider the property of forbidding a configuration F in A.

Definition Let

forb(m,F )= max{‖A‖ : A m-rowed simple, no configuration F}

e.g. forb(m,

[
1 0
0 1

]
) = m + 1
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Some Main Results

Definition Let Kk denote the k × 2k simple matrix of all possible
columns on k rows.

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

When a matrix A has a copy of Kk on some k-set of rows S , then
we say that A shatters S . The results of Vapnik and Chervonenkis
were for application in Applied Probability, in Learning Theory.
One defines A to have VC-dimension k if k is the maximum
cardinality of a shattered set in A. There are applications, e.g. a
Computational Geometry result of Matoušek for which the
geometric construction is verified to have VC-dimension at most 6.
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One well used result about VC-dimension involves the following.
Let S ⊂ [m] be a transversal of A if each column of A has at least
one 1 in a row of S . Seeking a minimum transversal, we let x be
the (0,1)-incidence vector of S , and compute:

τ = min
{

1 · x subject to ATx ≥ 1, x ∈ {0, 1}m
}
.

The natural fractional problem is:

τ∗ = min
{

1 · x subject to ATx ≥ 1, x ≥ 0
}
.

Theorem (Haussler and Welzl 87) If A has VC-dimension k then
τ ≤ 16kτ∗ log(kτ∗).
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Let sh(A) = {S ⊆ [m] : A shatters S}

e.g.

A =


0 1 1 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1
0 1 1 0 0 0


sh(A) = {∅, {1}, {2}, {3}, {4}, {2, 3}, {2, 4}}

So |sh(A)| = 7 ≥ 6 = ‖A‖
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Let sh(A) = {S ⊆ [m] : A shatters S}

Theorem (Pajor 85) |sh(A)| ≥ ‖A‖.
Proof: Decompose A as follows:

A =

[
0 0 · · · 0 1 1 · · · 1

A0 A1

]

‖A‖ = ‖A0‖+ ‖A1‖.
By induction |sh(A0)| ≥ ‖A0‖ and |sh(A1)| ≥ ‖A1‖.
|sh(A0) ∪ sh(A1)| = |sh(A0)|+ |sh(A1)| − |sh(A0) ∩ sh(A1)|
If S ∈ sh(A0) ∩ sh(A1), then 1 ∪ S ∈ sh(A).
So (sh(A0) ∪ sh(A1)) ∪

(
1 +

(
sh(A0) ∩ sh(A1)

))
⊆ sh(A).

|sh(A)| ≥ |sh(A0)|+ |sh(A1)|.
Hence |sh(A)| ≥ ‖A‖.
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Remark If A shatters S then A shatters any subset of S .

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
Proof: Let A have no Kk .

Then sh(A) can only contain sets of size k − 1 or smaller.
Then (

m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
≥ |sh(A)| ≥ ‖A‖.
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Some Main Results

Theorem (Sauer 72, Perles and Shelah 72, Vapnik and
Chervonenkis 71)

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+· · ·+

(
m

0

)
which is Θ(mk−1).

Corollary Let F be a k × ` simple matrix. Then
forb(m,F ) = O(mk−1).

Theorem (Füredi 83). Let F be a k × ` matrix. Then
forb(m,F ) = O(mk).

Problem Given F , can we predict the behaviour of forb(m,F )?
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A result for simple F

Definition Let F be a k-rowed configuration and let α be a
k-rowed column vector. Define [F |α] to be the concatenation of F
and α.

Theorem (A, Fleming 10) Let F be a k × ` simple matrix
satisfying . . . various conditions. . .
Then forb(m,F ) is O(mk−2) (instead of Θ(mk−1)).
Moreover if F satisfies . . . various additional conditions. . . then
for any k-rowed column α not in F , we have forb(m, [F |α]) is
Θ(mk−1).
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A result for simple F

Let E1 =

[
1
1

]
,E2 =

[
0
0

]
,E3 =

[
1 0
0 1

]
.

Theorem (A, Fleming 10) Let F be a k × ` simple matrix such
that there is a pair of rows with no configuration E1 and there is a
pair of rows with no configuration E2 and there is a pair of rows
with no configuration E3. Then forb(m,F ) is O(mk−2).

Moreover if we select three subsets I1, I2, I3 ⊆ [k] with
|I1| = |I2| = |I3| = 2 and F is the column maximal k-rowed simple
matrix that has no configuration E1 on rows I1, no configuration
E2 on rows I2 and no configuration E3 on rows I3, then for any
k-rowed column α not in F ′, we have forb(m, [F |α]) is Θ(mk−1).
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Example

F =

 0 0 0 1
1 0 1 0
0 1 1 1

 , forb(m,F ) = 2m
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A Product Construction

The building blocks of our product constructions are I , I c and T ,
e.g:

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I c4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , T4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1
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The Conjecture

We conjecture that product constructions with the three building
blocks {I , I c ,T} determine the asymptotically best constructions.

a a
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Definition Given two matrices A,B, we define the product A× B
as the matrix whose columns are obtained by placing a column of
A on top of a column of B in all possible ways. (A, Griggs, Sali 97)

1 0 0
0 1 0
0 0 1

×
1 1 1

0 1 1
0 0 1

 =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 1


Given p simple matrices A1,A2, . . . ,Ap, each of size m/p ×m/p,
the p-fold product A1 × A2 × · · · × Ap is a simple matrix of size
m × (m/p)p i.e. Θ(mp) columns.
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Examples

[01]× [01] =

[
1 1 0 0
1 0 1 0

]
= K2

Im/2 × Im/2 is vertex-edge incidence matrix of Km/2,m/2 = T (m, 2)
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The Conjecture χ(G )→ x(F )?

We conjecture that product constructions with the three building
blocks {I , I c ,T} determine the asymptotically best constructions.

Definition Let F be given. Let x(F ) denote the largest p such
that there is a p-fold product which does not contain F as a
configuration where the p-fold product is A1×A2× · · · ×Ap where
each Ai ∈ {Im/p, I

c
m/p,Tm/p}.

Conjecture (A, Sali 05) forb(m,F ) is Θ(mx(F )).

The conjecture has been verified for k × ` F where k = 2 (A,
Griggs, Sali 97) and k = 3 (A, Sali 05) and ` = 2 (A, Keevash 06)
and for k-rowed F with bounds Θ(mk−1) or Θ(mk) (A, Fleming
11) plus other cases.
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6-rowed Configurations with Quadratic Bounds

G6×3 =



1 1 1
1 1 0
1 0 1
0 1 0
0 0 1
0 0 0


Theorem (A,Raggi,Sali 11) forb(m,G6×3) is Θ(m2). Moreover
G6×3 is a boundary case, namely for any column α, then
forb(m, [G6×3|α]) is Ω(m3). In fact if F is 6-rowed and not a
configuration in G6×3, then forb(m,F ) is Ω(m3).

The proof uses induction to reduce to a 5-rowed case which is then
established by a quite complicated induction.
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Repeated Columns

Definition Let t ·M be the matrix [M |M | · · · |M] consisting of t
copies of M placed side by side.

Theorem (A, Füredi 86) Let t, k be given.

forb(m, t · Kk) ≤ t − 2

k + 1

(
m

k

)
+

(
m

k

)
+

(
m

k − 1

)
+ · · ·

(
m

0

)
with equality if a certain k-design exists.

Richard Anstee,UBC, Vancouver Forbidden Configurations: A Survey



Repeated Columns
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A 4-rowed F with a quadratic bound

Using the result of A and Fleming 10, there are three simple
column-maximal 4-rowed F for which forb(m,F ) is quadratic.
Here is one example:

F8 =


1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 1 1 1
0 0 1 1 0 0


Can we repeat columns in F8 and still have a quadratic bound?
We note that repeating either the column of sum 1 or the column
of sum 3 will result in a cubic lower bound. Thus we only consider
taking multiple copies of the columns of sum 2.

For a fixed t, let

F8(t) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·


1 0
0 1
1 1
0 0
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A 4-rowed F with a quadratic bound

F8(t) =


1 0 1 0
0 1 0 1
0 0 1 1
0 0 1 1

t ·


1 0
0 1
1 1
0 0




Theorem (A, Raggi, Sali 09) Let t be given. Then forb(m,F8(t))
is Θ(m2). Moreover F8(t) is a boundary case, namely for any
column α not already present t times in F8(t), then
forb(m, [F8(t)|α]) is Ω(m3).

The proof of the upper bound is currently a rather complicated
induction with some directed graph arguments.
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We have been able to determine an ‘easy’ criteria for k-rowed F
for which forb(m,F ) is O(mk−1) as opposed to Θ(mk).

Theorem (A.,Fleming, Sali, Füredi 05, A., Fleming 11)
There is an . . . easy to describe list . . . of various k-rowed F for
which forb(m,F ) is O(mk−1).

Moreover if a k-rowed F is not a configuration in one of the . . .
easy to describe list . . . then forb(m,F ) is Θ(mk).
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We have been able to determine an ‘easy’ criteria for k-rowed F
for which forb(m,F ) is O(mk−1) as opposed to Θ(mk).

Theorem (A.,Fleming, Sali, Füredi 05, A., Fleming 11)
Let D(k) denote the matrix with all columns of sum at least 1
except those columns with 1’s on both rows 1 and 2.
Then forb(m, [0k | t · D(k)]) is O(mk−1).

Let B be an k × (k + 1) matrix with one column of each column
sum. Then forb(m, [Kk | t · [Kk\B]]) is O(mk−1).

Moreover if F is a k-rowed configuration not a configuration in
either [0 | t · D(k)]) or in [Kk | t · [Kk\B]], for some k × (k + 1)
matrix B with one column of each column sum, then forb(m,F ) is
Θ(mk).
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Exact Bounds

Determining exact bounds forb(m,F ) can be very challenging
requiring much more understanding than is required for asymptotic
bounds. The proofs often depend heavily on the structures of
m × forb(m,F ) simple matrices that avoid F ; these are called
extremal matrices. Despite the challenge (and fun!) of obtaining
exact bounds, I suspect the asymptotic results are more important.
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Exact Bounds

Theorem (A., Kamoosi 07)

forb(m,

[
1 1 0 0 0 0 0
0 0 1 1 1 1 1

]
) =

⌊
10

3
m − 4

3

⌋
.
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Exact Bounds

Theorem (A., Karp 10)

forb(m,

 1 1 1
1 1 1
1 0 0

) =
4

3

(
m

2

)
+ m + 1

for m ≡ 1, 3(mod 6).
A simple design theoretic construction (Steiner Triple System)

yields the lower bound forb(m,
[
1 1 1
1 1 1

]
) ≥ 4

3

(m
2

)
+ m + 1 while a

pigeonhole argument yields the upper bound

forb(m,
[
1 1 1
1 1 1

]
) ≤ 4

3

(m
2

)
+ m + 1. Extending this upper bound to

the 3× 3 matrix requires a careful matching argument.
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Definition Let K `
k denote the k ×

(k
`

)
simple matrix of all possible

columns of sum ` on k rows.

Theorem (A., Barekat) Let q be given and let F be the following
4× q matrix

F =


q︷ ︸︸ ︷

1 1 · · · 1
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0


Then

forb(m,F ) ≤
(

m

0

)
+

(
m

1

)
+

q + 3

3

(
m

2

)
+

(
m

m − 1

)
+

(
m

m

)
with equality if m ≥ q and m ≡ 1, 3(mod 6) and

A = [K 0
mK 1

mK 2
mTm,aT c

m,bKm−2
m Km−1

m Km
m ]

(for some choice a, b with a + b = q − 3) .
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Exact Bounds

The following result, found with the help of Genetic algorithms,
has a bound just 2 larger than the one we initially expected.

Theorem (A., Raggi 11) Assume m ≥ 6. Then

forb(m,

 1 1 0 0
1 1 0 0
0 0 1 1

) =
(m
2

)
+ m + 4.

The construction was relatively complicated:

A =
U

L

 0u

×
0`

0u

×
1`

0u

×
K `−1
`

0u

×
K `−2
`

K 1
u

×
K `−1
`

1u

×
0`

K 1
u

×
1`

K 2
u

×
1`

1u

×
1`

 .
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Critical Substructures

Definition A critical substructure of a configuration F is a
minimal configuration F ′ contained in F such that

forb(m,F ′) = forb(m,F ).

A critical substructure F ′ has an associated construction avoiding
it that yields a lower bound on forb(m,F ′).
Some other argument provides the upper bound for forb(m,F ).
When F ′ is a configuration in F ′′ and F ′′ is a configuration in F ,
we deduce that

forb(m,F ′) = forb(m,F ′′) = forb(m,F ).

Let 1k0` denote the (k + `)× 1 column of k 1’s on top of ` 0’s.
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Critical Substructures for K4

K4 =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0


Critical substructures are 14, K 3

4 , K 2
4 , K 1

4 , 04, 2 · 13, 2 · 03.
Note that forb(m, 14) = forb(m,K 3

4 ) = forb(m,K 2
4 ) = forb(m,K 1

4 )
= forb(m, 04) = forb(m, 2 · 13) = forb(m, 2 · 03).
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We can extend K4 and yet have the same bound

[K4|1202] =


1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1
1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0
1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0


Theorem (A., Meehan) For m ≥ 5, we have
forb(m, [K4|1202]) = forb(m,K4).

We expect in fact that we could add many copies of the column
1202 and obtain the same bound, albeit for larger values of m.
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F2110 =


1 1
1 1
1 0
0 1


Not all F are likely to yield simple exact bounds:

Theorem Let c be a positive real number. Let A be an
m ×

(
c
(m
2

)
+ m + 2

)
simple matrix with no F2110. Then for some

M > m, there is an M ×
(

(c + 2
m(m−1))

(M
2

)
+ M + 2

)
simple

matrix with no F2110.

Theorem (P. Dukes 09) forb(m,F2110) ≤ .691m2

The proof used inequalities and linear programming

Richard Anstee,UBC, Vancouver Forbidden Configurations: A Survey



Open Problems

Determine the asymptotics for forb(m,F ) for

F =


1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1

. (Hard!)
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Open Problems

Determine an exact bound for forb(m,F ) for

F =

1 1 1 0
1 1 1 0
0 0 0 1

.
Show that 2 · 14 (the 4× 2 matrix of 1’s) and 2 · 04 are the only
4-rowed critical substructures of K5 by showing that for m large,

forb(m, [04 | 2 · K 1
4 | 2 · K 2

4 | 2 · K 3
4 | 14]) < forb(m,K5).
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THANKS to the University of Regina for the invitation!
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5× 6 Simple Configuration with Quadratic bound

F7 =


1 1 0 1 1 0
1 0 1 1 1 1
0 1 0 1 0 1
0 0 1 0 0 1
0 0 0 0 1 0


Theorem (A, Raggi, Sali) forb(m,F7) is Θ(m2). Moreover F7 is a
boundary case, namely for any column α, then forb(m, [F7|α]) is
Ω(m3).

The Conjecture predicts nine 5-rowed simple matrices F to be
boundary cases of which this is one.
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Induction

Let A be an m × forb(m,F7) simple matrix with no configuration
F7. We can select a row r and reorder rows and columns to obtain

A =
row r

[
0 · · · 0 1 · · · 1

Br Cr Cr Dr

]
.

Now [BrCrDr ] is an (m − 1)-rowed simple matrix with no
configuration F7. Also Cr is an (m − 1)-rowed simple matrix with
no configurations in F where F is derived from F7.
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Cr has no F in

F =




1 0 1 1 0
0 0 1 0 1
0 1 0 0 1
0 0 0 1 0

 ,


1 1 0 1
0 1 1 1
0 0 1 0
0 0 0 1

 ,


1 1 0 1 0
1 0 1 1 1
0 1 0 1 1
0 0 1 0 1
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Induction

Let A be an m × forb(m,F7) simple matrix with no configuration
F7. We can select a row r and reorder rows and columns to obtain

A =
row r

[
0 · · · 0 1 · · · 1

Br Cr Cr Dr

]
.

Now [BrCrDr ] is an (m − 1)-rowed simple matrix with no
configuration F7. Also Cr is an (m − 1)-rowed simple matrix with
no configurations in F where F is derived from F7.

Then
‖A‖ = forb(m,F7) = ‖BrCrDr‖+ ‖Cr‖ ≤ forb(m − 1,F7) + ‖Cr‖.
To show forb(m,F7) is quadratic it would suffice to show ‖Cr‖ is
linear for some choice of r .
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F7. We can select a row r and reorder rows and columns to obtain

A =
row r

[
0 · · · 0 1 · · · 1

Br Cr Cr Dr

]
.

Now [BrCrDr ] is an (m − 1)-rowed simple matrix with no
configuration F7. Also Cr is an (m − 1)-rowed simple matrix with
no configurations in F where F is derived from F7.
Then
‖A‖ = forb(m,F7) = ‖BrCrDr‖+ ‖Cr‖ ≤ forb(m − 1,F7) + ‖Cr‖.
To show forb(m,F7) is quadratic it would suffice to show ‖Cr‖ is
linear for some choice of r .
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Repeated Induction

Let Cr be an (m − 1)-rowed simple matrix with no configuration in
F . We can select a row si and reorder rows and columns to obtain

Cr =
row si

[
0 · · · 0 1 · · · 1
Ei Gi Gi Hi

]
.

To show ‖Cr‖ is linear it would suffice to show ‖Gi‖ is bounded by
a constant for some choice of si . Our proof shows that assuming
‖Gi‖ ≥ 8 for all choices si results in a contradiction.

Idea: Select a minimal set of rows Li so that Gi |Li is simple.
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Repeated Induction

Let Cr be an (m − 1)-rowed simple matrix with no configuration in
F . We can select a row si and reorder rows and columns to obtain

Cr =
row si

[
0 · · · 0 1 · · · 1
Ei Gi Gi Hi

]
.

To show ‖Cr‖ is linear it would suffice to show ‖Gi‖ is bounded by
a constant for some choice of si . Our proof shows that assuming
‖Gi‖ ≥ 8 for all choices si results in a contradiction.

Idea: Select a minimal set of rows Li so that Gi |Li is simple.
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Idea: Select a minimal set of rows Li so that Gi |Li is simple.

We first discover Gi |Li = [0|I ] or [1|I c ] or [0|T ].

Then we discover:

Cr =
row si

Li{

 0 · · · 0 1 · · · 1
Ei Gi Gi Hi

columns ⊆ [0|I ]


}Li

.
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Idea: Select a minimal set of rows Li so that Gi |Li is simple.

We first discover Gi |Li = [0|I ] or [1|I c ] or [0|T ].
Then we discover:

Cr =
row si

Li{

 0 · · · 0 1 · · · 1
Ei Gi Gi Hi

columns ⊆ [0|I ]


}Li

.
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Idea: Select a minimal set of rows Li so that Gi |Li is simple.

We first discover Gi |Li = [0|I ] or [1|I c ] or [0|T ].
Then we discover:

Cr =
row si

Li{

 0 · · · 0 1 · · · 1
Ei Gi Gi Hi

columns ⊆ [1|I c ]


}Li

.
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Idea: Select a minimal set of rows Li so that Gi |Li is simple.

We first discover Gi |Li = [0|I ] or [1|I c ] or [0|T ].
Then we discover:

Cr =
row si

Li{

 0 · · · 0 1 · · · 1
Ei Gi Gi Hi

columns ⊆ [0|T ]


}Li

.
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We may choose s1 and form L1.
Then choose s2 ∈ L1 and form L2.
Then choose s3 ∈ L2 and form L3.
etc.
We can show the sets L1\s2, L2\s3, L3\s4, . . . are disjoint.
Assuming ‖Gi‖ ≥ 8 for all choices si results in |Li\si+1| ≥ 3 which
yields a contradiction.
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