
Deformation Theory

Atharva Korde

This is a quick introduction to deformation theory. More generally, just a
handy document to remember all the definitions and some motivation for them,
with lesser emphasis on the proofs. Unless otherwise specified, we work over the
field of complex numbers.

1 Introduction

The goal of algebraic geometry is to classify all varieties up to isomorphism. This
is too hard to do but we’d at least like to parametrize our varieties of interest by
a space, in this case, a scheme of finite type. The problem of classifying objects
of a certain type is called a moduli problem. The first example to think of is
probably the case of nonsingular curves of genus g.

For a scheme S of finite type, consider ‘families’ of genus g curves over S.
A family of nonsingular genus g curves over S is given by the data of a proper,
smooth morphism f : X → S such that every geometric fiber is a nonsingular
genus g curve. Two families f : X → S and f ′ : X ′ → S are isomorphic if there
is an isomorphism ϕ : X → X ′ over S, i.e. fitting into a commutative diagram

X X ′

S
f ′f

ϕ

Let Schf be the category of schemes of finite type. To formalize, define the
functorMg : Sch

op
f → Set

Mg(S) := {f : X → S is a family of nonsingular genus g curves}/ ∼

where the equivalence ∼ is given by isomorphism of families. The functoriality
is by pullbacks: If h : T → S is a morphism, then F (h) : F (S) → F (T )
sends f : X → S to the pullback family fT : X ×S T → T . Observe that
Mg(C) = Mg(SpecC) gives the objects that we’re interested in. Mg is an
example of a moduli functor.

Here are some more examples of moduli problems and moduli functors:
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• Line bundles over a scheme: Let X be a fixed scheme. A family of line
bundles parametrized by a scheme T is a line bundle L on X×C T . Define
the Picard functor, PicX : Schopf → Set by

PicX(T ) := Pic(X ×C T )/p
∗Pic(T )

where p : X ×C T → T is the projection. Here Pic is the ordinary Picard
group. The functoriality is by pullbacks as before and PicX(C) = Pic(X),
the objects of interest.

• Genus 0 curves with n marked points: Fix an integer n ≥ 1. A family
of nonsingular genus 0 curves with n marked points over S ∈ Schf is the
data π : X → S a smooth, proper map such that every geometric fiber is a
nonsingular genus 0 curve along with n sections si : S → X , i = 1, 2, . . . , n
that do not pairwise intersect. An isomorphism of two families over S given
by data (X , S, π, {si}), (X ′, S, π′, {s′i}) is an S-isomorphism of schemes
ϕ : X → X ′ such that the diagram commutes for every i.

X X ′

S

si s′i

ϕ

Define the functorM0.n : Schopf → Set by

M0.n(S) = {(X , S, π, {si}) a family of smooth

genus 0 curves with n marked points}/ ∼

where ∼ is again isomorphism of families. The functoriality is by pull-
backs: the fiber product (T ×S X )×X S is T and the section si necessarily
pulls back to a section ti.

T S

T ×S X X

T S

ππT

f

siti

• Let X be a projective scheme with a fixed very ample line bundle OX(1).
The Hilbert scheme functor HilbX : Schopf → Set of X is defined by:
HilbX(S) to be the set of all closed subschemes Z ⊂ X ×C S, flat over S.
For any numerical polynomial p, there is a subfunctor HilbpX of HilbX

given by

HilbpX(S) = {closed subschemes Z ⊂ X × S flat over S, with p(Zs) = p}
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where p(Zs) denotes the Hilbert polynomial of Zs by the induced polar-
ization.

The hope is that these moduli functors are representable; if this happens our
objects of interest and even families, can be obtained in the best way possible. A
moduli functor F : Schopf → Set is representable if there is an object M ∈ Schf

and an isomorphism Φ : hM = Hom(·,M) → F . This object is unique up
to a unique isomorphism. Giving such an isomorphism Φ is equivalent, by
the Yoneda lemma, to give an object of F (M) corresponding to the identity
morphism 1M ∈ Hom(M,M). Call this family u : U → M . This family has
extra properties:

1. Given a family f : X → S, there is a unique morphism jf : S → M such
that f : X → S is isomorphic to the pullback family uS : U ×M S → S.

2. The closed points ofM are precisely the C-valued points, asM is assumed
to be of finite type. These correspond bijectively to F (C).

3. From (1) and (2), for a family f : X → S, the map jf is given on closed
points by sending p ∈ S(C) to the closed point ofM corresponding to (the
isomorphism class of) the fiber Xp.

Definition 1 Suppose F is a moduli functor representable by an object M .
Then M is called a fine moduli space for F . The family u : U → M is called a
universal family.

This is too ambitious and it almost never happens when the objects have
automorphisms as the functor does not keep track of those at all. For example,
Mg is not representable. There are families with isomorphic fibers but the
family itself is not isomorphic to the trivial product family. For if f : X → S is
such a nontrivial family, all of whose fibers are isomorphic, then point 3 above
would imply that the map jf is a constant map, the same as that for a trivial
product family, a contradiction.

We could deal with the coarse moduli space instead, which is a much weaker
concept as it does not require a universal family to exist. This is the ‘smallest’
space that parametrizes the objects of interest.

Definition 2 For a moduli functor F , M is said to be a coarse moduli space if
there is a natural transformation ξ : F → hM such that

(1) For every algebraically closed field Ω, ξ(Ω) : F (Ω)→ hM (Ω) =M(Ω) is
a bijection.

(2) If ξ′ : F → hM ′ is another natural transformation for M ′ ∈ Schf, there
is a unique map ψ :M →M ′ giving a diagram

3



hM

F

hM ′

ξ

ξ′

ψ

A coarse moduli space may exist when fine moduli space doesn’t. But it is
usually harder to work with. For example Mg has a coarse moduli space Mg,
famously constructed by Deligne and Mumford. It may happen that a moduli
functor has no coarse moduli space as well.

A less ambitious goal is to study ‘infinitesimal’ behaviour of the objects of
interest and this is the subject of deformation theory.

2 Formal Deformation Theory

We want to study the local behaviour of a moduli functor, even if the mod-
uli functor is not representable. Suppose F is representable by M , an actual
geometric object. The local geometry of M at a closed point m ∈ M (say
m corresponds to a geometric object X) is captured by the canonical map
Spec(OM.m)→M . For example, we can read off the tangent space at m as the
morphisms in M(C[ϵ]/ϵ2) sending the point of Spec(C[ϵ]/ϵ2) to m. This is the
same as giving a local C-algebra homomorphism OM.m → C[ϵ]/ϵ2.

In general, this can be done for any finitely generated Artin local C-algebra
A with residue field C, which give the right candidates to analyze local neigh-
bourhoods of m ∈M . If A is one such, we can consider the morphisms inM(A)
sending the unique point of SpecA to m; these are in bijection with the set
{π : X → SpecA | X ×A C ∼= X}.

Let Art be the category of Artin local C-algebras with residue field C, with
morphisms as local C-algebra maps.

Definition 3 A deformation functor is a (covariant) functor Def : Art→ Set
such that Def(C) = {•} is a one element set.

Let (R,mR), (S,mS) be local C-algebras with residue fields C. Recall that
the completion of the local ring R at mR is given by the inverse limit

R̂ = lim←−R/m
n
R

A local C-algebra morphism R → S gives a morphism of complete local rings
R̂ → Ŝ. If S is Artin, the canonical inclusion S ↪→ Ŝ becomes an isomorphism
(as mnS = 0 for some n). So for A ∈ Art, the sets Hom(R,A) and Hom(R̂, A)
are in bijection.
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Example 1 Let O be a complete local C-algebra with residue field C. Then
DefO : Art→ Set defined by DefO(A) = Hom(O, A) is a deformation functor.

Let F be a moduli functor having a fine moduli spaceM andm ∈M a closed
point corresponding to an object X. Let DefF,m be the corresponding defor-
mation functor of X, which sends A ∈ Art to the morphisms in M(A) which

send the point of SpecA to m. Then DefF,m is isomorphic to Hom(ÔM,m,−).
The problem is that ÔM,m is usually not in Art, so this functor is not quite
representable, but close.

Definition 4 A deformation functor Def is called prorepresentable if there is a
complete local C-algebra O with residue field C and an isomorphism η of functors
η : Hom(O, ·)→ Def(·).

Consider deformations of a nonsingular variety X. The deformation functor
DefX : Art→ Set is given by defining DefX(A) to be (the isomorphism classes
of) families π : X → SpecA where π is flat and a map ϕ : X → X (necessarily
a closed immersion) fitting into a diagram

X X

SpecC SpecA

ϕ

π

and X ∼= X ×A C via the induced fiber product map. A first order deforma-
tion of X is an element of DefX(C[ϵ]/ϵ2). The set DefX(C[ϵ]/ϵ2) is called the
tangent space of DefX . Elements of DefX(A) are called infinitesimal deforma-
tions of X.

Example 2 Let X be a nonsingular variety. The first order deformations of X
are in one-to-one correspondence with the cohomology group H1(X,TX) where
TX is the tangent sheaf. The element 0 ∈ H1(X,TX) corresponds to the trivial
family X ×C C[ϵ]/ϵ2.

Example 3 Let X be a scheme of finite type and L be a line bundle on X. The
first order deformations of L are in one-to-one correspondence with H1(X,OX).
The element 0 ∈ H1(X,OX) corresponds to the trivial extension p∗L, where
p : X ×C C[ϵ]/ϵ2 → X is the projection.

Recall the infinitesimal lifting property: Suppose (R,m) is a regular local
ring and t : A′ → A is a surjection of Artin local C-algebras with (ker t)2 = 0.
Then a map j : R→ A can be lifted to a map j′ : R→ A′ as in the diagram

A′

R A

t
j′

j
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The infinitesimal lifting property has the following implication for smooth-
ness: Let M be a scheme of finite type. Then M is smooth iff the following
property holds: For every map i : T = SpecA→ T ′ = SpecA′ of affine schemes
(where A,A′ are not necessarily Artin) with [ker(A′ → A)]2 = 0 and a map
f : T →M , it can be extended to f ′ : T ′ →M .

T ′

T M
f

i
f ′

If M is actually a fine moduli space for a moduli functor F and m ∈ M a
closed point, checking thatM is smooth atm is equivalent to checking whether a
morphism f : SpecA→M for A ∈ Art sending the point of SpecA tom extends
to f ′ : SpecA′ → M , for A′ ∈ Art a square-zero extension of A. Restated in
other words, M is smooth at m iff for every square-zero surjection A′ → A in
Art, DefF,m(A′)→ DefF,m(A) is surjective.

Definition 5 Let Def be a deformation functor. Def is called smooth if for
every square-zero surjection A′ → A in Art, Def(A′)→ Def(A) is surjective.

For something weaker, we may ask whether a particular deformation can be
extended. This is the notion of (un)obstructedness.

Definition 6 Let Def be a deformation functor and X ∈ Def(A) be an in-
finitesimal deformation for A ∈ Art. X is called unobstructed if, for each
surjection A′ → A in Art, there exists X ′ ∈ Def(A′) such that X ′ 7→ X under
Def(A′) → Def(A). If all infinitesimal deformations of • ∈ Def(C) = {•} are
unobstructed, • is called unobstructed, otherwise it is called obstructed.

• X X ′

SpecC SpecA SpecA′

π π′(?)

Example 4 For the functor DefX of a nonsingular variety X, its deformations
are unobstructed if the cohomology H2(X,TX) vanishes. Hence, a nonsingular
curve is unobstructed.

Computing the cohomologies to find the dimension of moduli spaces is not
hard: For a curve X of genus g, h1(X,TX) is 0 for g = 0, 1 for g = 1 and 3g−3
for g ≥ 2.

Warning: If H1(X,TX) = 0, this only means X has no non-trivial first
order deformations. This does not say anything about the global deformations.
However, if X is nonsingular, it is true that X has no non-trivial first order
deformations iff X has no non-trivial infinitesimal deformations.
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The categoryArt is closed under fiber products. That is, given maps A→ B
and C → B in Art, the fiber product of sets A ×B C with coordinate wise
addition and multiplication is again in Art. The (nilpotent) maximal ideal of
A×B C is mA ×mB

mC where mA,mB ,mC are the respective maximal ideals.

For a finite dimensional C-vector space V , the object C[V ] ∈ Art is given
by C⊕ V as a vector space with multiplication

(a, v)(a′, v′) = (aa′, a′v + av′)

If Def is a deformation functor with the extra condition that the induced fiber
product map (We will assume this condition henceforth)

Def(C[V ]×C C[W ])→ Def(C[V ])×F (C)={•} Def(C[W ])

is a bijection for vector spaces V andW , then Def(C[V ]) gets a canonical vector
space structure. Considering the addition + : C[V ] ×C C[V ] → C[V ], applying
Def and using the bijection gives an addition on Def(C[V ]). The scalar multi-
plication by c : C[V ] → C[V ] gives the scalar multiplication on Def(C[V ]). In
particular, the tangent space of a deformation functor is a vector space.

3 Formal Families

For a moduli functor, the best possible case is representability. For a deforma-
tion functor Def, the best possible case is prorepresentability. Since this is also
not possible every time, we need weaker notions.

Let Ârt be the category of complete local C-algebras with residue field C.
Instead of isomorphisms, consider only natural transformations

η : Hom(O,−)→ Def

for O in Ârt. An easy observation is that Def (any functor really) can be

extended to D̂ef : Ârt→ Set by defining

D̂ef(O) := lim←−Def(O/mn)

where m is the maximal ideal in O.
An element û of D̂ef(O) is called a formal element of Def. This is a se-

quence of compatible elements un ∈ Def(O/mn), so should be thought of as a
sequence of infinitesimal deformations, one for each Artin ring O/mn, where the
compatibility is given by pullbacks.

Theorem 1 (Formal Yoneda) There is a natural one-to-one correspondence

between D̂ef(O) and morphisms η : Hom(O,−)→ Def.

A quick sketch of the correspondence: A morphism η defines a formal element

û ∈ D̂ef(O) by setting un to be the image of πn ∈ Hom(O,O/mn) in Def(O/mn),
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where πn is the canonical projection. In the other direction, a formal element û
given by a sequence un ∈ Def(O/mn) defines a morphism η as follows: By the
ordinary Yoneda lemma, each un defines a morphism ηn : Hom(O/mn,−) →
Def. Let f ∈ Hom(O, A). Since A is Artin, f factors through O/mn for large
enough n, say f = fn ◦πn, fn : O/mn → A. Define η(A)(f) := ηn(A)(fn). More
concretely, ηn+1 ◦ πn+1,n = ηn so η is the limit lim−→ ηn.

Hom(O/mn,−) Hom(O/mn+1,−)

Def

πn+1,n

ηn ηn+1

If Def is prorepresentable with η : Hom(O,−) → Def an isomorphism for

O ∈ Ârt, by formal Yoneda there is a ‘formal family’ û ∈ D̂ef(O) inducing the
isomorphism η. Such a family û is called a universal formal family for Def.

If F is a moduli functor with a fine moduli space M and universal family
u : X →M and for a point m ∈M , if DefF,m is the corresponding deformation

functor, it is prorepresentable by O = ÔM,m. The universal formal family
û = {un}n≥1 is given by pulling back u.

Xn X

Spec(O/mnm) M

uun

The following criterion for prorepresentability is due to Schlessinger.

Theorem 2 Let Def be a deformation functor. For A → B, C → B in Art,
consider the natural map

Def(A×B C)→ Def(A)×Def(B) Def(C) (⋆)

Def is prorepresentable if the following properties hold:
(1) (⋆) is surjective whenever C → B is small.
(2) (⋆) is bijective when B = C and A = C = C[ϵ]/ϵ2.
(3) The tangent space Def(C[ϵ]/ϵ2) is a finite dimensional vector space.
(4) (⋆) is bijective if A = C, the maps A→ B, C → B are equal & small.

In general, the deformation functor DefX of a projective nonsingular va-
riety X is not prorepresentable, but it satisfies the first three conditions of
Schlessinger’s theorem.

There is a notion of smooth morphisms of functors.

Definition 7 Let ξ : Def1 → Def2 be a morphism of deformation functors. ξ
is called smooth if for every surjection A → B in Art, the map induced by the
fiber product Def1(A)→ Def1(B)×Def2(B) Def2(A) is surjective.
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The motivation for this definition is the fact: If O,O′ ∈ Ârt and ϕ : O → O′

is a morphism, the induced morphism of deformation functors Hom(O′,−) →
Hom(O,−) is smooth iff O′ = O[[z1, z2, · · · , zn]], that is O′ is a formal power
series ring over O.

Apply the definition of smoothness to A = C = C[ϵ]/ϵ2 and B = C to get
that ξ(C[ϵ]/ϵ2) : Def1(C[ϵ]/ϵ2)→ Def2(C[ϵ]/ϵ2) is surjective. This map is called
the differential and is a linear map of vector spaces.

Definition 8 Let Def be a deformation functor. If there exists an object O ∈
Ârt and a formal family û ∈ D̂ef(O) with the property that the map defined by û
by the formal Yoneda lemma Hom(O,−)→ Def is smooth, Def is called versal.
The pair (O, û) is called a versal pair.

If (O, û) is a versal pair, taking the surjection A → C in Art shows that
Hom(O, A) → Def(A) is surjective for all A and from this it follows that

Hom(O, R) → D̂ef(R) is surjective for all R ∈ Ârt. So versality means that

every formal element v̂ ∈ D̂ef(R) is induced by pulling back û on SpecO by a
(not necessarily unique) morphism O → R.

Definition 9 A versal pair (O, û) for Def is called semiuniversal if in addition,
the differential Hom(O,C[ϵ]/ϵ2)→ Def(C[ϵ]/ϵ2) is an isomorphism.

Examples of deformation functors admitting a semiuniversal pair include the
Picard functor of deformations of a line bundle on a fixed scheme X and the
deformation functor of a projective variety X.

4 A Modern Viewpoint: DGLAs

The modern viewpoint to deformation theory by the giants in mathematics
(Deligne, Drinfeld, Quillen and more) is that every deformation problem over
a field of characteristic zero is governed by a differential graded Lie algebra (or
DGLA for short). The Maurer-Cartan locus gives the infinitesimal deformations
of an algebro-geometric object, as will be explained shortly. The prototypical
example of this phenomenon is the deformation theory of a compact complex
manifold, which arises from the Kodaira-Spencer DGLA.

Definition 10 A DGLA over a field k consists of
(1) A graded k-vector space L =

⊕
i≥0 L

i

(2) For each i ≥ 0, a differential d : Li → Li+1, such that d2 = 0
(3) A bilinear Lie bracket [·, ·] : L× L→ L with [Li, Lj ] ⊂ Li+j
satisfying the following properties for homogeneous elements a, b, c of degrees
|a|, |b|, |c| respectively:

• Graded antisymmetry: [a, b] = −(−1)|a||b|[b, a]

• Graded Leibniz rule: d[a, b] = [da, b] + (−1)|a|[a, db]
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• Graded Jacobi identity:

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0

Definition 11 Let L be a DGLA. The Maurer-Cartan locus of L is the set

MC(L) :=

{
x ∈ L1 | dx+

1

2
[x, x] = 0

}
We take most of what follows without all the details.

Example 5 Let L be a DGLA and suppose m is the maximal ideal of A ∈ Art.
The tensor product L ⊗ m =

⊕
i≥0 L

i ⊗ m gets a structure of a DGLA with
differential d(x ⊗ r) = dx ⊗ r and bracket [x ⊗ r, y ⊗ s] = [x, y] ⊗ rs, both
extended linearly.

Recall that mn = 0 for some n. If a ∈ L0 ⊗ m, then ada = [a,−] is a
derivation as is easy to verify and is nilpotent as m is. Hence exp(ada) is an
automorphism of L⊗m.

There is a ‘gauge action’ of L0 ⊗m on L⊗m given by: if a ∈ L0 ⊗m, define

ea · x := x+

∞∑
n=0

adna
(n+ 1)!

(ada(x)− da)

The relation eb · (ea · x) = eb•a · x holds, where b • a is the Baker-Campbell-
Hausdorff product in L0 ⊗ m. Hence the gauge action is really an action. The
Maurer-Cartan Locus of L⊗m is invariant under this action, therefore we can

consider the set MC(L⊗m)
gauge equivalence .

Definition 12 Let L be a DGLA. The deformation functor associated to L,
DefL : Art→ Set is

Def(A) =
MC(L⊗mA)

gauge equivalence

where mA is the maximal ideal of A.

Principle 1 Let Def : Art→ Set be a deformation functor. Then there exists
a DGLA L such that Def ∼= DefL.

The DGLA L above will not be unique, but it will be unique upto quasi-
isomorphism. Two DGLAs (L, dL, [·, ·]L) and (M,dM , [·, ·]M ) are called quasi-
isomorphic if there is a Lie algebra homomorphism ϕ = {ϕi}i≥0 of complexes
such that ϕ induces an isomorphism the cohomology spacesHi(L, dL) ∼= Hi(M,dM )
for all i ≥ 0.

Let X be a compact complex manifold of dimension n. There is the Kodaira-
Spencer DGLA associated to X,

KS(X) := A0,∗(TX1,0) =

n⊕
q=0

A0,q(TX1,0)
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where TX1,0 is the holomorphic tangent bundle ofX. The differential ofKS(X)
is the Dolbeault differential of TX1,0 and the Lie bracket is given by the wedge
product on the forms and the usual Lie bracket on the tangent vector fields.

For a variety X, an infinitesimal deformation of X over an A ∈ Art is
equivalent from the definition, to giving a sheaf OX of A-algebras and the data
of a morphism of sheaves OX → OX with OX flat over A and the induced map
OX ⊗A C → OX is an isomorphism. We use this equivalent definition for a
complex manifold, with OX now being the sheaf of holomorphic functions. Let
DefX be the deformation functor of X.

Theorem 3 For a compact complex manifold X, there is an isomorphism

DefKS(X) → Def(X)

The Maurer-Cartan condition really comes up here as the integrability con-
dition of the Newlander-Nirenberg theorem.
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