The Higher Direct Images of a Coherent Sheaf under a Proper Morphism are Coherent

Atharva Korde

In this note we prove that for a proper morphism of noetherian schemes $f: X \to S$ and a coherent sheaf \mathcal{F} on X, the higher direct images $R^i f_* \mathcal{F}$ are also coherent for every $i \geq 0$. This will be an application of the technique of devissage and obviously, Chow's lemma. I learnt of this proof from EGA and that's the only reference, I think.

1 The Big Theorems

Theorem 1. (Chow's Lemma) Let $f: X \to S$ be a proper morphism of noetherian schemes. Then there is a projective S-scheme X' and a surjective Smorphism $\phi: X' \to X$ which induces an isomorphism $\phi^{-1}(U) \to U$ for a dense open subset U of X.

Theorem 2. (Grothendieck's Devissage) Let X be a Noetherian scheme and let \mathcal{P} be a property of coherent sheaves on X. Assume that the following hold:

- (Two-out-of-three) Let $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ be a short exact sequence of coherent sheaves on X. If any two of the \mathcal{F}_i have property \mathcal{P} , then so does the third.
- (Devissage) For every closed integral subscheme $Y \subset X$ with generic point η , there is a coherent sheaf \mathcal{F} on X with the property \mathcal{P} satisfying
 - 1. $Supp(\mathcal{F}) = Y$.
 - 2. $\mathfrak{m}_{\eta}\mathcal{F}_{\eta}=0$ where \mathfrak{m}_{η} is the maximal ideal of the local ring $\mathcal{O}_{X,\eta}$.
 - 3. $\dim_{k(\eta)} \mathcal{F}_{\eta} = 1$ where $k(\eta) = \mathcal{O}_{X,\eta}/\mathfrak{m}_{\eta} \cong \mathcal{O}_{Y,\eta}$ is the residue field.

Then property \mathcal{P} holds for every coherent sheaf on X.

We will also need the Leray/Grothendieck spectral sequence of a composed functor. If $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are abelian categories with enough injectives and

$$F: \mathcal{A} \to \mathcal{B}, \ G: \mathcal{B} \to \mathcal{C}$$

are left exact functors satisfying the property that F maps the injective objects of \mathcal{A} to G-acyclic objects of \mathcal{B} , then there is a spectral sequence computing the right derived functors of $G \circ F$. For any object A in \mathcal{A} ,

$$E_2^{p,q} = R^p G(R^q F(A)) \Rightarrow E_\infty^{p,q} = Gr_L^p R^{p+q} (G \circ F)(A)$$

where L is the natural filtration.

Apply this to the case when U, V, W are schemes with maps $\psi : U \to V$ and $\phi : V \to W$. If $\mathfrak{Sh}(X)$ denotes the category of sheaves of \mathcal{O}_X -modules (this has enough injectives), then there are the pushforward functors

$$F = \psi_* : \mathfrak{Sh}(U) \to \mathfrak{Sh}(V), \ G = \phi_* : \mathfrak{Sh}(V) \to \mathfrak{Sh}(W)$$

and $G \circ F = (\phi \circ \psi)_* : \mathfrak{Sh}(U) \to \mathfrak{Sh}(W)$. Any injective object is flasque and the pushforward of any flasque sheaf is flasque. Since flasque sheaves are acyclic objects for a pushforward functor, there is a spectral sequence for any \mathcal{O}_U -module \mathcal{F} :

$$E_2^{p,q} = R^p \phi_*(R^q \psi_* \mathcal{F}) \Rightarrow E_\infty^{p,q} = Gr_L^p R^{p+q} (\phi \circ \psi)_* \mathcal{F}$$
(1)

2 Proof of the Main Theorem

Theorem 3. Let X, S be noetherian schemes, \mathcal{F} a coherent sheaf on X and $f: X \to S$ a proper morphism. Then all higher direct image sheaves $R^i f_* \mathcal{F}$, $i \geq 0$ are coherent on S.

Proof. Verifying 'two-out-of-three' is easy: If $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence of coherent sheaves on X, the associated long exact sequence runs as

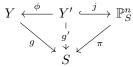
$$\cdots \to R^p f_* \mathcal{F}_3 \to R^{p+1} f_* \mathcal{F}_1 \to R^{p+1} f_* \mathcal{F}_2 \to R^{p+1} f_* \mathcal{F}_3 \to R^{p+2} f_* \mathcal{F}_1 \to \cdots$$

If the theorem holds for two of the \mathcal{F}_i , then the higher direct images of the third are sandwiched in the long exact sequence between coherent sheaves, and are hence, coherent by the two-out-of-three lemma for coherent sheaves.

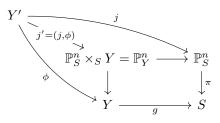
For the 'devissage' step, begin by constructing for a closed integral subscheme $i: Y \to X$ with generic point η , a coherent sheaf \mathcal{G} on Y satisfying the properties

- $\dim_{k(\eta)} \mathcal{G}_{\eta} = 1$
- If we denote $g = f \circ i : Y \to S$, $R^p g_* \mathcal{G} = 0$ for all p > 0
- $R^0 g_* \mathcal{G} = g_* \mathcal{G}$ is coherent

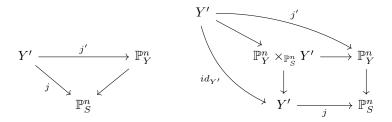
Note that g is proper. Apply Chow's lemma to g to get a diagram



with ϕ surjective, g' projective and a (dense) open subset $U \subset Y$ such that $\phi : \phi^{-1}(U) \to U$ is an isomorphism. The induced map $j' := (j, \phi) : Y' \to \mathbb{P}_Y^n$ is a closed immersion.



(This is really some abstract nonsense: From the diagrams



since $g: Y \to S$ is proper, in particular separated, so is $\mathbb{P}_Y^n \to \mathbb{P}_S^n$ and so is $\mathbb{P}_Y^n \times_{\mathbb{P}_S^n} Y' \to Y'$ by base change. Then $Y' \to \mathbb{P}_Y^n \times_{\mathbb{P}_S^n} Y'$ is a closed immersion, being a section of a separated morphism. The morphism j is a closed immersion hence, so is $\mathbb{P}_Y^n \times_{\mathbb{P}_S^n} Y' \to \mathbb{P}_Y^n$ by base change. Then j' is the composition of two closed immersions, so is one itself.)

So $\mathcal{L} := (j')^* \mathcal{O}_{\mathbb{P}^n_Y}(1) = (j)^* \mathcal{O}_{\mathbb{P}^n_S}(1)$ is a very ample line bundle on Y' wrt ϕ and g' respectively. By Serre's vanishing theorem, for a large enough integer m, all higher direct images $R^p \phi_* \mathcal{L}^{\otimes m}$ and $R^p(g')_* \mathcal{L}^{\otimes m}$ vanish for all p > 0.

We claim that $\mathcal{G} := \phi_* \mathcal{L}^{\otimes m}$ works. That $\dim_{k(\eta)} \mathcal{G}_{\eta} = 1$ is clear because $\mathcal{L}^{\otimes m}$ is a line bundle and ϕ is an isomorphism between $\phi^{-1}(U)$ and U. That $g_*\mathcal{G} = (g')_*\mathcal{L}^{\otimes m}$ is coherent is also clear because we know the theorem for projective morphisms, in this case g'. To show the vanishing of higher direct images, the spectral sequence (1) gives

$$E_2^{p,q} = R^p g_*(R^q \phi_* \mathcal{L}^{\otimes m}) \Rightarrow E_\infty^{p,q} = Gr_L^p R^{p+q} (g')_* \mathcal{L}^{\otimes m}$$

The only nonzero term in E_{∞} is at (0,0) while the only nonzero terms in E_2 have q = 0. So $E_2^{p,q} = 0$ for all p > 0 as well, meaning $R^p g_*(R^0 \phi_* \mathcal{L}^{\otimes m}) = R^p g_* \mathcal{G} = 0$ for all p > 0. This proves the claim.

To end the devissage argument, $i_*\mathcal{G} := \mathcal{F}$ works. Since *i* is a closed immersion, \mathcal{F} is coherent. All conditions of devissage are clear except the fact that \mathcal{F} satisfies the theorem. As was proved in the previous construction, $f_*\mathcal{F} = g_*\mathcal{G}$ is coherent. For the higher direct images, using (1) again gives a spectral sequence

$$E_2^{p,q} = R^p f_*(R^q i_* \mathcal{G}) \Rightarrow E_\infty^{p,q} = Gr_L^p R^{p+q} g_* \mathcal{G}$$

The same argument as before applies: the only nonzero term in E_{∞} is at (0,0) and on the E_2 page the only nonzero terms have q = 0 because *i* is a closed immersion, in particular, affine. So $E_2^{p,0} = E_{\infty}^{p,0}$, i.e. $R^p f_* \mathcal{F} = Gr_L^p R^p g^* \mathcal{G} = R^p g^* \mathcal{G} = 0$ for all p > 0 and the proof is complete.

Corollary 1. If X is a noetherian scheme, A is a noetherian ring and $f: X \to SpecA$ is proper, all cohomologies $H^i(X, \mathcal{F})$ are finitely generated A-modules for any coherent sheaf \mathcal{F} on X.

Proof. Immediate from theorem 3.