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We prove the Weyl character formula in this note. All notations will be the same as in the note on the
theorem of highest weight. Let g be a finite dimensional complex semisimple Lie algebra, h a Cartan subalgebra
of g, Φ the set of roots of g wrt h, ∆ a basis for Φ, Φ+ and Φ− the subsets of positive, resp. negative roots wrt
∆, W the Weyl group and ρ the half-sum of the positive roots.

1 The Weyl Character Formula

Let Z[h∗] be the group ring of the Abelian group h∗, i.e. for each µ ∈ h∗, there is a basis element eµ ∈ h∗ with
multiplication given by eµeν = eµ+ν for µ, ν ∈ h∗. Z[h∗] is an integral domain. On Z[h∗R], the Weyl group acts
naturally: for w ∈ W and µ ∈ h∗R we have w · eµ = ewµ.

Definition 1.1. For a finite dimensional g-module V , the character of V , chV ∈ Z[h∗] is defined as

chV =
∑
µ∈h∗

(dimVµ)eµ

When λ is a dominant integral weight, the module L(λ) is finite dimensional. The Weyl character formula
gives an expression for the character of L(λ).

Theorem 1.2. (The Weyl Character Formula) For λ a dominant integral weight,

chL(λ) =

∑
w∈W det(w)ew(λ+ρ)∏
α∈Φ+(eα/2 − e−α/2)

If λ = 0, L(0) is the trivial representation of L, so chL(0) = e0 and the character formula gives the Weyl
denominator formula, ∑

w∈W
(detw)ew(ρ) =

∏
α∈Φ+

(eα/2 − e−α/2)

So the character formula can be written as

chL(λ) =

∑
w∈W det(w)ew(λ+ρ)∑
w∈W det(w)ew(ρ)

This form of the character formula is useful in computing the dimension of L(λ). We state the theorem here,
a proof can be found in the references.

Theorem 1.3. (The Weyl Dimension Formula)

dimL(λ) =

∏
α∈Φ+(λ+ ρ, α)∏
α∈Φ+(ρ, α)

In the following lemma, the computations are formal, but make sense. We write down the ‘character of the
Verma modules’ (this is a formal object, really, as the Verma modules are infinite dimensional).

Lemma 1.4.

ch∆(λ) =
eλ∏

α∈Φ+(1− e−α)
=

eλ+ρ∏
α∈Φ+(eα/2 − e−α/2)

Proof. Consider the product: eλ ·
∏
α∈Φ+(1 + e−α + e−2α + · · · ). For ν positive, the coefficient of eλ−ν in

this product is equal to the number of ways to write ν as an (unordered) sum of positive roots with non-
negative integer coefficients. Recalling that ∆(λ) is a free U(n)-module of rank 1, this number is precisely
the dimension of ∆(λ)λ−ν . Hence the product is ch∆(λ) and the equalities follow from the computation:
1 + e−α + e−2α + · · · = 1

1−e−α .

We record two identities for later use.
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Lemma 1.5. For λ a dominant integral weight and w ∈ W the following two identities hold:

w · chL(λ) = chL(λ)

w ·

(
eρ
∏
α∈Φ+

(1− e−α)

)
= detw

(
eρ
∏
α∈Φ+

(1− e−α)

)
Proof. To see that these hold, it is enough to prove both in the case w = σα, a reflection corresponding to a
simple positive root α ∈ ∆. The first follows from the fact that dimL(λ)µ = dimL(λ)σαµ (proved earlier) and
the second folows from the fact that σα permutes the positive roots other than α so that σα(ρ) = ρ− α.

2 Some properties of the Verma modules

Recall that the Casimir operator C in U(g) may be defined as follows: Let κ be the Killing form of g. For each
positive root α, let xα, yα be chosen from gα, g−α respectively such that κ(xα, yα) = 1 and let {h1, h2, · · · , hr}
be an orthonormal basis of κ|h×h (κ|h×h is a nondegenerate bilinear form on h). Then

C =
∑
α∈Φ+

(xαyα + yαxα) +

r∑
i=1

h2
i

Proposition 2.1. For λ ∈ h∗, C acts on ∆(λ) by the scalar (λ+ ρ, λ+ ρ)− (ρ, ρ).

Proof. It is enough to know how C acts on the generator, vλ. This is a computation:

Cvλ =

( ∑
α∈Φ+

(2yαxα + [xα, yα]) +

r∑
i=1

h2
i

)
vλ =

∑
α∈Φ+

λ([xα, yα])vλ +

r∑
i=1

λ(hi)
2vλ

So the scalar by which C operates is
∑
α∈Φ+ λ([xα, yα]) +

∑r
i=1 λ(hi)

2. Let tλ be the element of h such that
λ(·) = κ(tλ, ·). Then ∑

α∈Φ+

λ([xα, yα]) =
∑
α∈Φ+

κ(tλ, [xα, yα]) =
∑
α∈Φ+

κ([tλ, xα], yα)

=
∑
α∈Φ+

κ(α(tλ)xα, yα) =
∑
α∈Φ+

α(tλ) = 2ρ(tλ) = 2(ρ, λ)

and
r∑
i=1

λ(hi)
2 =

r∑
i=1

κ(tλ, hi)
2 =

r∑
i=1

κ(tλ, κ(tλ, hi)hi) = κ(tλ, tλ) = (λ, λ)

So the scalar is 2(ρ, λ) + (λ, λ) = (λ+ ρ, λ+ ρ)− (ρ, ρ).

Theorem 2.2. For λ ∈ h∗R, ∆(λ) has a finite filtration

∆(λ) = M0 ⊃M1 ⊃ · · · ⊃Mn−1 ⊃Mn = (0)

such that the succesive quotients Mi−1�Mi
are isomorphic to L(µi), and the µi belong to the set Sλ = {µ ∈

h∗R | µ ≤ λ, (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ)}.

Proof. First note that if M�N is a simple subquotient of ∆(λ), then M�N ∼= L(µ) for some µ ∈ Sλ. Indeed,

the set of weights of M�N is a subset of the weights of ∆(λ). Hence M�N has a maximal weight, µ implying

that M�N ∼= L(µ) (see the note on the theorem of highest weight). From 2.1, C acts on ∆(λ) by (λ+ ρ, λ+ ρ).

So it also acts on any subquotient of ∆(λ) by the scalar (λ + ρ, λ+ ρ). But as M�N ∼= L(µ), C acts on M�N
by (µ+ ρ, µ+ ρ). This shows (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ) and µ ∈ Sλ.

In Sλ, the condition µ ≤ λ implies that µ lies in a discrete set and the equality (µ+ρ, µ+ρ) = (λ+ρ, λ+ρ)
implies that µ lies in the compact set which is a translate of the sphere of radius

√
(λ+ ρ, λ+ ρ) by −ρ. So

Sλ is contained in the intersection of a discrete set with a compact set and so is finite.
We construct the filtration: M1 = rad(∆(λ)) and if Mi has been constructed and is nonzero, let Mi+1 be a

maximal submodule of Mi. We claim that the chain M0 ⊃M1 ⊃ · · · ends at (0) for some i. This is because only

the finitely many µ ∈ Sλ can occur as the highest weights of the subquotients Mi−1�Mi
and each such µ can

occur only finitely many times as the highest weight because the weight spaces ∆(λ)µ are finite dimensional.
This proves the theorem.

Remark: The theorem holds for all λ ∈ h∗. I am not sure if the proof above works for the general case
as (·, ·) is an inner product on h∗R only, so the set Sλ may not be compact. Infact, one proves that the BGG
category O (of which the Verma modules are objects and the simple objects are precisely the L(µ)) is Artinian
by Harish-Chandra’s theorem on characters and that’s the only proof I’ve seen.
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3 Proof of the Weyl character formula

Proof. The idea is to use Theorem 2.2 and an ‘inversion’ trick to express chL(λ) in terms of ch∆(µ), µ ∈ Sλ,
which we know well. For µ, ν ∈ Sλ, let [∆(ν) : L(µ)] be the number of simple subquotients isomorphic to L(µ)
in a composition series for ∆(ν) (In view of Theorem 2.2 and the Jordan-Holder theorem, this number is well
defined). Since the character is additive,

ch∆(ν) =
∑
µ∈Sν

[∆(ν) : L(µ)]chL(µ)

and [∆(ν) : L(ν)] = 1 because the λ-weight space of ∆(λ) is one dimensional. If ν ∈ Sλ, then Sν ⊂ Sλ, and
hence in an appropriate ordering of the ν’s, the coefficients [∆(ν) : L(µ)] form an upper triangular matrix with
non-negative integer entries and 1s on the diagonal. We can invert this matrix to get

chL(λ) =
∑
µ∈Sλ

c(µ, λ)ch∆(µ) (1)

for some coefficients c(µ, λ) ∈ Z and c(λ, λ) = 1. It remains to compute these unknown coefficients. Multiplying
both sides by eρ and using Lemma 1.3, we get

chL(λ)

(
eρ
∏
α∈Φ+

(1− e−α)

)
=
∑
µ∈Sλ

c(µ, λ)eµ+ρ

Applying w ∈ W to both sides and using Lemma 1.4,

det(w)chL(λ)

(
eρ
∏
α∈Φ+

(1− e−α)

)
=
∑
µ∈Sλ

c(µ, λ)ew(µ+ρ)

In particular, the following equation holds for all w ∈ W:∑
µ∈Sλ

det(w)c(µ, λ)eµ+ρ =
∑
µ∈Sλ

c(µ, λ)ew(µ+ρ) (2)

So let µ be such that c(µ, λ) 6= 0. We claim that µ = wµ(λ + ρ) − ρ for a unique wµ ∈ W (The action
w · λ := w(λ+ ρ)− ρ is called the dot action of W on h∗R). We have seen that there exists a w ∈ W such that
w(µ + ρ) is dominant. If ν = w · µ, comparing the coefficients of eν+ρ in (2) gives c(µ, λ) = det(w)c(ν, λ); in
particular, ν ∈ Sλ as c(ν, λ) 6= 0. Then we get,

0 = (λ+ ρ, λ+ ρ)− (ν + ρ, ν + ρ) = (λ+ ν + 2ρ, λ− ν) ≥ 0

as λ + ν + 2ρ is strongly dominant and ν ≤ λ. The equality forces ν = λ hence, wµ = w−1 works. To see
uniqueness, if w1, w2 are such that µ = w1 · λ = w2 · λ, then w(λ+ ρ) = λ+ ρ for w = w−1

1 w2. If w is not the
identity, w sends some positive root α to a negative root, but in that case

0 < (λ+ ρ, α) = (w(λ+ ρ), w(α)) = (λ+ ρ, w(α)) < 0

is a contradiction. So w1 = w2 and we get: c(µ, λ) = det(wµ)c(λ, λ) = det(wµ). Conversely, it is obvious by
the above that µ = w · λ implies c(µ, λ) = det(w). Using all of this information, equation (1) becomes:

chL(λ) =

∑
µ∈Sλ

c(µ, λ)eµ+ρ∏
α∈Φ+(eα/2 − e−α/2)

=

∑
w∈W det(w)ew(λ+ρ)∏
α∈Φ+(eα/2 − e−α/2)

and this completes the proof.

References

[1] James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, American Mathematical Society,
2008.

[2] Akhil Mathew, Climbing Mount Bourbaki, https://amathew.wordpress.com/tag/semisimple-lie-algebras/.

3


