THE WEYL CHARACTER FORMULA

Atharva Korde

We prove the Weyl character formula in this note. All notations will be the same as in the note on the theorem of highest weight. Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra, \mathfrak{h} a Cartan subalgebra of \mathfrak{g} , Φ the set of roots of \mathfrak{g} wrt \mathfrak{h} , Δ a basis for Φ , Φ^+ and Φ^- the subsets of positive, resp. negative roots wrt Δ , \mathcal{W} the Weyl group and ρ the half-sum of the positive roots.

1 The Weyl Character Formula

Let $\mathbb{Z}[\mathfrak{h}^*]$ be the group ring of the Abelian group \mathfrak{h}^* , i.e. for each $\mu \in \mathfrak{h}^*$, there is a basis element $e^{\mu} \in \mathfrak{h}^*$ with multiplication given by $e^{\mu}e^{\nu} = e^{\mu+\nu}$ for $\mu, \nu \in \mathfrak{h}^*$. $\mathbb{Z}[\mathfrak{h}^*]$ is an integral domain. On $\mathbb{Z}[\mathfrak{h}^*_{\mathbb{R}}]$, the Weyl group acts naturally: for $w \in \mathcal{W}$ and $\mu \in \mathfrak{h}^*_{\mathbb{R}}$ we have $w \cdot e^{\mu} = e^{w\mu}$.

Definition 1.1. For a finite dimensional \mathfrak{g} -module V, the character of V, $chV \in \mathbb{Z}[\mathfrak{h}^*]$ is defined as

$$\mathrm{ch}V = \sum_{\mu \in \mathfrak{h}^*} (\mathrm{dim}V_\mu) e^\mu$$

When λ is a dominant integral weight, the module $L(\lambda)$ is finite dimensional. The Weyl character formula gives an expression for the character of $L(\lambda)$.

Theorem 1.2. (The Weyl Character Formula) For λ a dominant integral weight,

$$\operatorname{ch} L(\lambda) = \frac{\sum_{w \in \mathcal{W}} \det(w) e^{w(\lambda+\rho)}}{\prod_{\alpha \in \Phi^+} (e^{\alpha/2} - e^{-\alpha/2})}$$

If $\lambda = 0$, L(0) is the trivial representation of L, so $chL(0) = e^0$ and the character formula gives the Weyl denominator formula,

$$\sum_{w\in\mathcal{W}}({\rm det}w)e^{w(\rho)}=\prod_{\alpha\in\Phi^+}(e^{\alpha/2}-e^{-\alpha/2})$$

So the character formula can be written as

$$\operatorname{ch} L(\lambda) = \frac{\sum_{w \in \mathcal{W}} \operatorname{det}(w) e^{w(\lambda+\rho)}}{\sum_{w \in \mathcal{W}} \operatorname{det}(w) e^{w(\rho)}}$$

This form of the character formula is useful in computing the dimension of $L(\lambda)$. We state the theorem here, a proof can be found in the references.

Theorem 1.3. (The Weyl Dimension Formula)

$$\dim L(\lambda) = \frac{\prod_{\alpha \in \Phi^+} (\lambda + \rho, \alpha)}{\prod_{\alpha \in \Phi^+} (\rho, \alpha)}$$

In the following lemma, the computations are formal, but make sense. We write down the 'character of the Verma modules' (this is a formal object, really, as the Verma modules are infinite dimensional).

Lemma 1.4.

$$\operatorname{ch}\Delta(\lambda) = \frac{e^{\lambda}}{\prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})} = \frac{e^{\lambda + \rho}}{\prod_{\alpha \in \Phi^+} (e^{\alpha/2} - e^{-\alpha/2})}$$

Proof. Consider the product: $e^{\lambda} \cdot \prod_{\alpha \in \Phi^+} (1 + e^{-\alpha} + e^{-2\alpha} + \cdots)$. For ν positive, the coefficient of $e^{\lambda - \nu}$ in this product is equal to the number of ways to write ν as an (unordered) sum of positive roots with non-negative integer coefficients. Recalling that $\Delta(\lambda)$ is a free $U(\mathfrak{n})$ -module of rank 1, this number is precisely the dimension of $\Delta(\lambda)_{\lambda-\nu}$. Hence the product is $\mathrm{ch}\Delta(\lambda)$ and the equalities follow from the computation: $1 + e^{-\alpha} + e^{-2\alpha} + \cdots = \frac{1}{1 - e^{-\alpha}}$.

We record two identities for later use.

Lemma 1.5. For λ a dominant integral weight and $w \in \mathcal{W}$ the following two identities hold:

$$w \cdot \operatorname{ch} L(\lambda) = \operatorname{ch} L(\lambda)$$
$$w \cdot \left(e^{\rho} \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})\right) = \det w \left(e^{\rho} \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})\right)$$

Proof. To see that these hold, it is enough to prove both in the case $w = \sigma_{\alpha}$, a reflection corresponding to a simple positive root $\alpha \in \Delta$. The first follows from the fact that $\dim L(\lambda)_{\mu} = \dim L(\lambda)_{\sigma_{\alpha}\mu}$ (proved earlier) and the second follows from the fact that σ_{α} permutes the positive roots other than α so that $\sigma_{\alpha}(\rho) = \rho - \alpha$.

2 Some properties of the Verma modules

Recall that the Casimir operator C in $U(\mathfrak{g})$ may be defined as follows: Let κ be the Killing form of \mathfrak{g} . For each positive root α , let x_{α}, y_{α} be chosen from $\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}$ respectively such that $\kappa(x_{\alpha}, y_{\alpha}) = 1$ and let $\{h_1, h_2, \cdots, h_r\}$ be an orthonormal basis of $\kappa|_{\mathfrak{h} \times \mathfrak{h}}$ ($\kappa|_{\mathfrak{h} \times \mathfrak{h}}$ is a nondegenerate bilinear form on \mathfrak{h}). Then

$$\mathcal{C} = \sum_{\alpha \in \Phi^+} (x_\alpha y_\alpha + y_\alpha x_\alpha) + \sum_{i=1}^r h_i^2$$

Proposition 2.1. For $\lambda \in \mathfrak{h}^*$, \mathcal{C} acts on $\Delta(\lambda)$ by the scalar $(\lambda + \rho, \lambda + \rho) - (\rho, \rho)$.

Proof. It is enough to know how C acts on the generator, v_{λ} . This is a computation:

$$\mathcal{C}v_{\lambda} = \left(\sum_{\alpha \in \Phi^+} (2y_{\alpha}x_{\alpha} + [x_{\alpha}, y_{\alpha}]) + \sum_{i=1}^r h_i^2\right)v_{\lambda} = \sum_{\alpha \in \Phi^+} \lambda([x_{\alpha}, y_{\alpha}])v_{\lambda} + \sum_{i=1}^r \lambda(h_i)^2 v_{\lambda}$$

So the scalar by which \mathcal{C} operates is $\sum_{\alpha \in \Phi^+} \lambda([x_\alpha, y_\alpha]) + \sum_{i=1}^r \lambda(h_i)^2$. Let t_λ be the element of \mathfrak{h} such that $\lambda(\cdot) = \kappa(t_\lambda, \cdot)$. Then

$$\sum_{\alpha \in \Phi^+} \lambda([x_\alpha, y_\alpha]) = \sum_{\alpha \in \Phi^+} \kappa(t_\lambda, [x_\alpha, y_\alpha]) = \sum_{\alpha \in \Phi^+} \kappa([t_\lambda, x_\alpha], y_\alpha)$$
$$= \sum_{\alpha \in \Phi^+} \kappa(\alpha(t_\lambda) x_\alpha, y_\alpha) = \sum_{\alpha \in \Phi^+} \alpha(t_\lambda) = 2\rho(t_\lambda) = 2(\rho, \lambda)$$

and

$$\sum_{i=1}^{r} \lambda(h_i)^2 = \sum_{i=1}^{r} \kappa(t_\lambda, h_i)^2 = \sum_{i=1}^{r} \kappa(t_\lambda, \kappa(t_\lambda, h_i)h_i) = \kappa(t_\lambda, t_\lambda) = (\lambda, \lambda)$$

So the scalar is $2(\rho, \lambda) + (\lambda, \lambda) = (\lambda + \rho, \lambda + \rho) - (\rho, \rho)$.

Theorem 2.2. For $\lambda \in \mathfrak{h}_{\mathbb{R}}^*$, $\Delta(\lambda)$ has a finite filtration

 $\Delta(\lambda) = M_0 \supset M_1 \supset \cdots \supset M_{n-1} \supset M_n = (0)$

such that the succesive quotients M_{i-1}/M_i are isomorphic to $L(\mu_i)$, and the μ_i belong to the set $S_{\lambda} = \{\mu \in \mathfrak{h}_{\mathbb{R}}^* \mid \mu \leq \lambda, (\mu + \rho, \mu + \rho) = (\lambda + \rho, \lambda + \rho)\}.$

Proof. First note that if M_N is a simple subquotient of $\Delta(\lambda)$, then $M_N \cong L(\mu)$ for some $\mu \in S_{\lambda}$. Indeed, the set of weights of M_N is a subset of the weights of $\Delta(\lambda)$. Hence M_N has a maximal weight, μ implying that $M_N \cong L(\mu)$ (see the note on the theorem of highest weight). From 2.1, C acts on $\Delta(\lambda)$ by $(\lambda + \rho, \lambda + \rho)$. So it also acts on any subquotient of $\Delta(\lambda)$ by the scalar $(\lambda + \rho, \lambda + \rho)$. But as $M_N \cong L(\mu)$, C acts on M_N by $(\mu + \rho, \mu + \rho)$. This shows $(\mu + \rho, \mu + \rho) = (\lambda + \rho, \lambda + \rho)$ and $\mu \in S_{\lambda}$.

In S_{λ} , the condition $\mu \leq \lambda$ implies that μ lies in a discrete set and the equality $(\mu + \rho, \mu + \rho) = (\lambda + \rho, \lambda + \rho)$ implies that μ lies in the compact set which is a translate of the sphere of radius $\sqrt{(\lambda + \rho, \lambda + \rho)}$ by $-\rho$. So S_{λ} is contained in the intersection of a discrete set with a compact set and so is finite.

We construct the filtration: $M_1 = \operatorname{rad}(\Delta(\lambda))$ and if M_i has been constructed and is nonzero, let M_{i+1} be a maximal submodule of M_i . We claim that the chain $M_0 \supset M_1 \supset \cdots$ ends at (0) for some *i*. This is because only the finitely many $\mu \in S_{\lambda}$ can occur as the highest weights of the subquotients M_{i-1}/M_i and each such μ can occur only finitely many times as the highest weight because the weight spaces $\Delta(\lambda)_{\mu}$ are finite dimensional. This proves the theorem.

Remark: The theorem holds for all $\lambda \in \mathfrak{h}^*$. I am not sure if the proof above works for the general case as (\cdot, \cdot) is an inner product on $\mathfrak{h}^*_{\mathbb{R}}$ only, so the set S_{λ} may not be compact. Infact, one proves that the BGG category \mathcal{O} (of which the Verma modules are objects and the simple objects are precisely the $L(\mu)$) is Artinian by Harish-Chandra's theorem on characters and that's the only proof I've seen.

3 Proof of the Weyl character formula

Proof. The idea is to use Theorem 2.2 and an 'inversion' trick to express $chL(\lambda)$ in terms of $ch\Delta(\mu)$, $\mu \in S_{\lambda}$, which we know well. For $\mu, \nu \in S_{\lambda}$, let $[\Delta(\nu) : L(\mu)]$ be the number of simple subquotients isomorphic to $L(\mu)$ in a composition series for $\Delta(\nu)$ (In view of Theorem 2.2 and the Jordan-Holder theorem, this number is well defined). Since the character is additive,

$$\mathrm{ch}\Delta(\nu) = \sum_{\mu \in S_{\nu}} [\Delta(\nu) : L(\mu)] \mathrm{ch}L(\mu)$$

and $[\Delta(\nu) : L(\nu)] = 1$ because the λ -weight space of $\Delta(\lambda)$ is one dimensional. If $\nu \in S_{\lambda}$, then $S_{\nu} \subset S_{\lambda}$, and hence in an appropriate ordering of the ν 's, the coefficients $[\Delta(\nu) : L(\mu)]$ form an upper triangular matrix with non-negative integer entries and 1s on the diagonal. We can invert this matrix to get

$$\operatorname{ch}L(\lambda) = \sum_{\mu \in S_{\lambda}} c(\mu, \lambda) \operatorname{ch}\Delta(\mu) \tag{1}$$

for some coefficients $c(\mu, \lambda) \in \mathbb{Z}$ and $c(\lambda, \lambda) = 1$. It remains to compute these unknown coefficients. Multiplying both sides by e^{ρ} and using Lemma 1.3, we get

$$\operatorname{ch} L(\lambda) \left(e^{\rho} \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha}) \right) = \sum_{\mu \in S_{\lambda}} c(\mu, \lambda) e^{\mu + \rho}$$

Applying $w \in \mathcal{W}$ to both sides and using Lemma 1.4,

$$\det(w)\operatorname{ch} L(\lambda)\left(e^{\rho}\prod_{\alpha\in\Phi^+}(1-e^{-\alpha})\right) = \sum_{\mu\in S_{\lambda}}c(\mu,\lambda)e^{w(\mu+\rho)}$$

In particular, the following equation holds for all $w \in \mathcal{W}$:

$$\sum_{\mu \in S_{\lambda}} \det(w) c(\mu, \lambda) e^{\mu + \rho} = \sum_{\mu \in S_{\lambda}} c(\mu, \lambda) e^{w(\mu + \rho)}$$
(2)

So let μ be such that $c(\mu, \lambda) \neq 0$. We claim that $\mu = w_{\mu}(\lambda + \rho) - \rho$ for a unique $w_{\mu} \in \mathcal{W}$ (The action $w \cdot \lambda := w(\lambda + \rho) - \rho$ is called the dot action of \mathcal{W} on $\mathfrak{h}^*_{\mathbb{R}}$). We have seen that there exists a $w \in \mathcal{W}$ such that $w(\mu + \rho)$ is dominant. If $\nu = w \cdot \mu$, comparing the coefficients of $e^{\nu + \rho}$ in (2) gives $c(\mu, \lambda) = \det(w)c(\nu, \lambda)$; in particular, $\nu \in S_{\lambda}$ as $c(\nu, \lambda) \neq 0$. Then we get,

$$0 = (\lambda + \rho, \lambda + \rho) - (\nu + \rho, \nu + \rho) = (\lambda + \nu + 2\rho, \lambda - \nu) \ge 0$$

as $\lambda + \nu + 2\rho$ is strongly dominant and $\nu \leq \lambda$. The equality forces $\nu = \lambda$ hence, $w_{\mu} = w^{-1}$ works. To see uniqueness, if w_1, w_2 are such that $\mu = w_1 \cdot \lambda = w_2 \cdot \lambda$, then $w(\lambda + \rho) = \lambda + \rho$ for $w = w_1^{-1}w_2$. If w is not the identity, w sends some positive root α to a negative root, but in that case

$$0 < (\lambda + \rho, \alpha) = (w(\lambda + \rho), w(\alpha)) = (\lambda + \rho, w(\alpha)) < 0$$

is a contradiction. So $w_1 = w_2$ and we get: $c(\mu, \lambda) = \det(w_\mu)c(\lambda, \lambda) = \det(w_\mu)$. Conversely, it is obvious by the above that $\mu = w \cdot \lambda$ implies $c(\mu, \lambda) = \det(w)$. Using all of this information, equation (1) becomes:

$$\operatorname{ch} L(\lambda) = \frac{\sum_{\mu \in S_{\lambda}} c(\mu, \lambda) e^{\mu + \rho}}{\prod_{\alpha \in \Phi^+} (e^{\alpha/2} - e^{-\alpha/2})} = \frac{\sum_{w \in \mathcal{W}} \operatorname{det}(w) e^{w(\lambda + \rho)}}{\prod_{\alpha \in \Phi^+} (e^{\alpha/2} - e^{-\alpha/2})}$$

and this completes the proof.

References

- [1] James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, American Mathematical Society, 2008.
- [2] Akhil Mathew, Climbing Mount Bourbaki, https://amathew.wordpress.com/tag/semisimple-lie-algebras/.