FLAT MORPHISMS ARE OPEN

Atharva Korde

The goal of this note is to prove that a flat finite-type morphism between Noetherian schemes is open. A crucial ingredient in the proof is that the going-down property holds for a flat extension of rings, which really, is some tricky commutative algebra.

1 Faithfully Flat Modules

Throughtout, let A be a commutative ring.

Definition 1.1. An A-module M is called faithfully flat if the following holds: The sequence of A-modules $N' \to N \to N''$ is exact iff the sequence

$$N' \otimes_A M \to N \otimes_A M \to N'' \otimes_A M$$

is exact.

A faithfully flat module is obviously also flat. The word 'faithfully flat' is because the definition implies that $-\otimes_A M : \operatorname{Mod}(A) \to \operatorname{Mod}(A)$ is a fully faithful functor.

Lemma 1.2. The following are equivalent:

- 1. M is faithfully flat.
- 2. *M* is flat and $N \otimes_A M \neq 0$ whenever $N \neq 0$.
- 3. *M* is flat and $A_{m} \otimes_{A} M \neq 0$ for all maximal ideals \mathfrak{m} of *A*.

Proof. • (1) \implies (2) : If $N \otimes_A M \neq 0$ for $N \neq 0$, then $0 \to 0 = N \otimes_A M \to 0$ is exact but $0 \to N \to 0$ is not.

• (2) \implies (1): Given a sequence $N' \xrightarrow{f} N \xrightarrow{g} N''$, suppose

$$N' \otimes_A M \xrightarrow{f \otimes 1} N \otimes_A M \xrightarrow{g \otimes 1} N'' \otimes_A M$$

is exact. To show that im $f \subset \ker g$, let $x \in N'$ and $g(f(x)) = z \in N''$ with $z \neq 0$. For any $m \in M$,

$$0 = (g \otimes 1)(f \otimes 1)(x \otimes m) = z \otimes m$$

in $N'' \otimes_A M$. Let $E \subset N''$ be the submodule generated by z, so that $E \neq 0$ and $E \otimes_A M$ is a submodule of $N'' \otimes_A M$ by the flatness of M. However, $E \otimes_A M \neq 0$ by hypothesis but the above computation shows that $E \otimes_A M$ is the zero submodule of $N'' \otimes_A M$, a contradiction. So z = 0 and im $f \subset \ker g$. From the exact sequence

$$0 \to \operatorname{im} f \to \ker g \to \operatorname{ker} g / \operatorname{im} f \to 0$$

we get on tensoring with M,

$$\left(\ker g_{\operatorname{im} f}\right) \otimes_A M \cong \left(\ker g \otimes_A M\right)_{\operatorname{im} f \otimes_A M}$$

Now, ker $g \otimes_A M$ is a submodule of $N \otimes_A M$ and is contained in ker $(g \otimes 1)$. But ker $(g \otimes 1) = \operatorname{im}(f \otimes 1) = \operatorname{im} f \otimes_A M$. Since $\operatorname{im} f \subset \ker g$, $\operatorname{im} f \otimes_A M$ is a submodule of ker $g \otimes_A M$, hence ker $(g \otimes 1) \subset \ker g \otimes_A M$. Putting this together,

$$(\ker g \otimes_A M)/(\inf f \otimes_A M) = \frac{\ker(g \otimes 1)}{\inf(f \otimes 1)} = 0$$

and this implies $\ker g_{im f} = 0$, proving that $N' \xrightarrow{f} N \xrightarrow{g} N''$ is exact.

- (2) \implies (3) : Obvious.
- (3) \implies (2): Let *n* be a non-zero element of *N*. The map of *A*-modules $A \to N$ given by $a \to an$ has non-zero image so the kernel is a proper ideal \Im of *A*. Let \mathfrak{m} be a maximal ideal containing \Im . Since $\frac{A}{\Im} \subset N$, $\frac{A}{\Im \otimes_A M}$ is a submodule of $N \otimes_A M$. But from the surjection $\frac{A}{\mathfrak{m}} \to \frac{A}{\mathfrak{J}} \to 0$,

$$A_{/\mathfrak{m}} \otimes_A M \to A_{/\mathfrak{J}} \otimes_A M \to 0$$

so $A_{\Im \otimes A} M \neq 0$. This implies $N \otimes_A M \neq 0$ as well.

Corollary 1.3. Let $\phi : (A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a local ring homomorphism and M a finitely generated non-zero B-module. Then, as an A-module, M is flat iff M is faithfully flat.

Proof. From lemma 1.2, it only suffices to show that $A_{\mathfrak{m}} \otimes_A M \neq 0$. As $\phi(\mathfrak{m}) \subset \mathfrak{n}$, there is a surjection

$$A_{\operatorname{\mathfrak{m}}} \otimes_A M = M_{\operatorname{\mathfrak{m}}} M \to M_{\operatorname{\mathfrak{m}}} M$$

So it is enough to show that $M_{nM} \neq 0$ but this is just Nakayama's lemma.

Corollary 1.4. Let $\phi : A \to B$ be a flat map of rings. Then for every prime $\mathfrak{q} \subset B$ and $\mathfrak{p} = \phi^{-1}(\mathfrak{q}) \subset A$, $B_{\mathfrak{q}}$ is a faithfully flat $A_{\mathfrak{p}}$ -module.

Proof. Since ϕ is flat, the induced map on localizations, $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is also flat. Now corollary 1.3 applies, with the module being $B_{\mathfrak{q}}$.

Corollary 1.5. Let $\phi : A \to B$ be a faithfully flat map of rings. Then the induced map $\phi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is surjective.

Proof. For $\mathfrak{p} \in \text{Spec}(A)$, we need to show that the fiber $\text{Spec}(B \otimes_A k(\mathfrak{p}))$ is non-empty, that is, $B \otimes_A k(\mathfrak{p})$ is non-zero. This follows from (2) of lemma 1.2 as $k(\mathfrak{p}) \neq 0$.

Theorem 1.6 (Going-down). If $A \subset B$ is a flat extension of rings, then the going-down property holds.

Proof. Suppose $\mathfrak{p}' \subset \mathfrak{p}$ are primes in A and \mathfrak{q} is a prime in B lying over \mathfrak{p} . Then $A_{\mathfrak{p}} \subset B_{\mathfrak{q}}$ is a flat extension of local rings, so is faithfully flat by corollary 1.4. By corollary 1.5, $\operatorname{Spec}(B_{\mathfrak{q}}) \to \operatorname{Spec}(A_{\mathfrak{p}})$ is surjective, i.e., there is a prime \mathfrak{q}' of B such that $\mathfrak{q}' \subset \mathfrak{q}$ and $\mathfrak{q}'B_{\mathfrak{q}} \cap A_{\mathfrak{p}} = \mathfrak{p}'A_{\mathfrak{p}}$. So $\mathfrak{q}' \cap A = \mathfrak{p}'$ which proves the theorem.

2 Openness of Flat Morphisms

Recall that a morphism $f: X \to Y$ of schemes is called flat if for every $x \in X$, the induced morphism of local rings $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat. Corollary 1.3 implies that $\mathcal{O}_{X,x}$ is a faithfully flat $\mathcal{O}_{Y,f(x)}$ -module and 1.5 then implies that $\operatorname{Spec}(\mathcal{O}_{X,x}) \to \operatorname{Spec}(\mathcal{O}_{Y,f(x)})$ is surjective. Recalling that $\operatorname{Spec}(\mathcal{O}_{X,x})$ consists of precisely all the generizations of x, we see that the image of a flat morphism is closed under generizations. (A point y is called a generization of x if $x \in \overline{\{y\}}$.)

We will also need the theorem of Chevalley about the images of morphisms. A reference is Hartshorne, ch. II, exercise 3.19.

Theorem 2.1 (Chevalley). Let $f : X \to Y$ be a morphism of finite-type of Noetherian schemes. If E is a constructible subset of X, the image f(E) is also constructible in Y.

Theorem 2.2. Let $f: X \to Y$ be a flat, finite-type morphism of Noetherian schemes. Then f is open.

Proof. Let F = Y - f(X) and we need to show that F is closed. Let \overline{F} be the closure of F and give \overline{F} some subscheme structure. Let $\{F_i\}_{i=1}^n$ be the irreducible components of \overline{F} , having generic points $\{y_i\}_{i=1}^n$ respectively. We claim that every $y_i \in F$. Suppose that $y_i \in f(X)$ for some i. By Chevalley's theorem, $y_i \in U \cap V \subset f(X)$ for some U open and V closed in Y. Since V is closed and $y_i \in V$, $F_i \subset V$ so we may assume that $V = F_i$. Let $U' = U \cap (X - \bigcup_{j \neq i} F_j)$. Then U' is an open set contained in f(X) and $y_i \in U'$. But $F \subset X - U' \implies \overline{F} \subset X - U'$ and $y_i \in \overline{F}$, i.e., $y_i \in X - U'$, a contradiction. This proves the claim.

Now if $z \in \overline{F} - F$, z is in the image f(X) and also is in some $F_i = \overline{\{y_i\}}$. Since y_i is a generization of z, we see that $y_i \in f(X)$ as f is flat, a contradiction. Therefore $\overline{F} = F$, which proves that f(X) is open.

Γ	

Corollary 2.3. Let $f: X \to Y$ be a finite flat morphism of Noetherian schemes. If Y is irreducible, f is surjective.

Proof. From theorem 2.2, the image f(X) is open. Since finite morphisms are closed, f(X) is closed. The assertion now follows as Y is irreducible, hence connected.

References

- [1] Robin Hartshorne, Algebraic Geometry, Springer, New York, 1977.
- [2] James Milne, Etale Cohomology, Princeton University Press, New Jersey, 1980.