THE THEOREM OF HIGHEST WEIGHT

Atharva Korde

The goal of this note is to prove that the finite dimensional irreducible representations of a complex, semisimple (finite dimensional) Lie algebra are classified by their highest weight, which we shall explain in more detail below.

The following notation will be used: Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra. Let \mathfrak{h} a Cartan subalgebra of \mathfrak{g} , Φ the set of roots of \mathfrak{g} wrt \mathfrak{h} , Δ a basis for Φ consisting of the simple roots $\{\alpha_1, \cdots, \alpha_l\}$ and Φ^+ , Φ^- the subsets of positive, resp. negative roots wrt Δ . A partial order on \mathfrak{h}^* is defined as follows: for $\lambda, \mu \in \mathfrak{h}^*, \ \mu \leq \lambda \text{ iff } \lambda - \mu = \sum_{\alpha \in \Phi^+} n_\alpha \alpha, \ n_\alpha \in \mathbb{Z}_{\geq 0} \ \forall \ \alpha \in \Phi^+.$

Some definitions and the theorem 1

If V is a representation of \mathfrak{h} , then for $\lambda \in \mathfrak{h}^*$, the λ -weight space of V, V_{λ} is defined by:

$$V_{\lambda} = \{ v \in V \mid hv = \lambda(h)v, \forall h \in \mathfrak{h} \}$$

If $V_{\lambda} \neq 0$, λ is called a weight of V.

Definition 1.1. A highest weight for a representation V of \mathfrak{g} is a weight λ such that for all weights μ of V, we have $\mu \leq \lambda$.

It is clear from the definition that a highest weight, if exists, is unique, so we may speak of 'the' highest weight of a representation. If λ is the highest weight of V, then any nonzero v in V_{λ} is called a highest weight vector of V. Further, if V is generated as a g-module by a highest weight vector, then V is called a highest weight module.

Definition 1.2. A weight vector $w \in V$ (of weight λ , say) such that $\mathfrak{g}_{\alpha} \cdot w = 0$ for all $\alpha \in \Phi^+$ is called a maximal vector and λ will be called a maximal weight.

Definition 1.3. Let $\lambda \in \mathfrak{h}^*$. λ is called integral if $\langle \lambda, \alpha \rangle \in \mathbb{Z}$, $\forall \alpha \in \Delta$. λ is called dominant if $\langle \lambda, \alpha \rangle \geq 0$, \forall $\alpha \in \Phi^+$ or equivalently, $\forall \alpha \in \Delta$.

We can now state the theorem:

Theorem 1.4. (i) If V is a finite dimensional irreducible \mathfrak{g} -module, then V has a highest weight, which is dominant and integral. In this case, V is a highest weight module.

(ii) If V, V' are finite dimensional irreducible g-modules with the same highest weight, then they are isomorphic.

(iii) Each dominant integral element of \mathfrak{h}^* is the highest weight of a finite dimensional irreducible \mathfrak{g} -module.

This explains the statement that the irreducible finite dimensional g-modules are classified according to their highest weight. Of course, it should be remembered that all of these definitions depend on our initial choices of \mathfrak{h} and Φ^+ .

We end the section with a simple proposition (without proof) and a useful corollary:

Proposition 1.5. For a \mathfrak{g} -module V,

(i) For all $\beta, \lambda \in \mathfrak{h}^*, \mathfrak{g}_{\beta} \cdot V_{\lambda} \subset V_{\beta+\lambda}$.

(ii) The sum $\sum_{\lambda \in \mathfrak{h}^*} V_{\lambda}$ is direct and is an \mathfrak{g} -submodule of V. (iii) If dim $V < \infty$, then $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$.

Note that (i) implies that a highest weight vector is maximal but the converse is not true. But the weaker notion of maximal vector is useful and we will use the following corollary.

Corollary 1.6. If dim $V < \infty$, then V has a maximal weight.

Proof. By (iii) of 1.5, there are only finitely many weights in the direct sum decomposition, so there exists a maximal weight.

2 Verma Modules

In this section, we define for each $\lambda \in \mathfrak{h}^*$ the highest weight modules $\Delta(\lambda)$, called the Verma modules (named after Dayanand Verma who introduced them in his thesis). These will be defined by an induced module construction.

Let U be the functor from the category of Lie algebras to the category of associative algebras, taking a Lie algebra to its universal enveloping algebra. Let $\mathfrak{b} = \mathfrak{h} \oplus (\bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_{\alpha})$ and $\mathfrak{n} = \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}_{-\alpha}$ be the Borel and nilpotent subalgebras of \mathfrak{g} associated to Φ^+ . Hence as vector spaces, $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{b}$. By the Poincare-Birkhoff-Witt (PBW) theorem, the induced maps $U(\mathfrak{b}) \to U(\mathfrak{g})$ and $U(\mathfrak{n}) \to U(\mathfrak{g})$ are injective.

Proposition 2.1. The injections above give an isomoprhism

$$U(\mathfrak{g}) \cong U(\mathfrak{n}) \otimes_{\mathbb{C}} U(\mathfrak{b})$$

as vector spaces as well as $(U(\mathfrak{n}), U(\mathfrak{b}))$ bimodules.

Since \mathfrak{b} is solvable, any finite dimensional irreducible \mathfrak{b} -module must be one dimensional (by Lie's theorem), so equals a single weight space of weight λ say, \mathbb{C}_{λ} with action $h \cdot 1 = \lambda(h)$ and $\mathfrak{g}_{\alpha} \cdot \mathbb{C}_{\lambda} = 0$ for $\alpha \in \Phi^+$. Conversely, for any $\lambda \in \mathfrak{h}^*$, we define the one dimensional \mathfrak{b} -module \mathbb{C} by $h \cdot 1 = \lambda(h)$ and $\mathfrak{g}_{\alpha} \cdot \mathbb{C} = 0$ for $\alpha \in \Phi^+$. It is easy to check that this defines a \mathfrak{b} -module structure on \mathbb{C} and hence, is \mathbb{C}_{λ} .

Definition 2.2. The Verma module $\Delta(\lambda)$ associated to λ is defined by:

$$\Delta(\lambda) = \operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$$

Set $v_{\lambda} = 1 \otimes 1$. It is called the canonical generator of $\Delta(\lambda)$. The following proposition explains why.

Proposition 2.3. Res^{\mathfrak{g}}_{\mathfrak{n}} $\Delta(\lambda)$ is a free $U(\mathfrak{n})$ -module of rank 1 by the isomorphism $n \to nv_{\lambda}$. In particular, $\Delta(\lambda)$ is infinite dimensional.

Proof. As a $U(\mathfrak{n})$ -module, we have the isomorphisms

$$\Delta(\lambda) \cong (U(\mathfrak{n}) \otimes_{\mathbb{C}} U(\mathfrak{b})) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \cong U(\mathfrak{n}) \otimes_{\mathbb{C}} \left(U(\mathfrak{b}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \right) \cong U(\mathfrak{n}) \otimes_{\mathbb{C}} \mathbb{C}_{\lambda} \cong U(\mathfrak{n})$$

where we have used the associativity of the tensor product and the isomorphism is clear from the above steps. $\hfill \Box$

Proposition 2.4. $\Delta(\lambda)$ has the weight space decomposition

$$\Delta(\lambda) = \bigoplus_{\mu \le \lambda} \Delta(\lambda)_{\mu}$$

Further, all the weight spaces are finite dimensional and the λ -weight space is the one dimensional space $\mathbb{C}v_{\lambda}$. $\Delta(\lambda)$ is a highest weight module of weight λ .

Proof. Fix an ordering of the positive roots $\alpha_1, \alpha_2, \cdots, \alpha_r$ and for each *i* pick nonzero $y_i \in \mathfrak{g}_{-\alpha_i}$. By the PBW theorem, a basis for $U(\mathfrak{n})$ is given by monomials of the form $y_1^{a_1}y_2^{a_2}\ldots y_r^{a_r}$ with $a_i \in \mathbb{Z}_{\geq 0}$. So by 2.3, a basis for $\Delta(\lambda)$ is given by the elements $(y_1^{a_1}y_2^{a_2}\ldots y_r^{a_r})v_{\lambda}$.

For $h \in \mathfrak{h}$,

$$hv_{\lambda} = h(1 \otimes 1) = h \otimes 1 = 1 \otimes (h.1) = 1 \otimes \lambda(h) = \lambda(h)(1 \otimes 1) = \lambda(h)v_{\lambda}$$

where the equality $h \otimes 1 = 1 \otimes (h.1)$ is because $U(\mathfrak{h})$ injects into $U(\mathfrak{b})$. Hence, $v_{\lambda} \in \Delta(\lambda)_{\lambda}$. By (i) of 1.5, the basis element $(y_1^{a_1}y_2^{a_2}\ldots y_r^{a_r})v_{\lambda}$ belongs to $\Delta(\lambda)_{\lambda-\sum_{i=1}^r a_i\alpha_i}$. This shows that all weights are $\leq \lambda$ and also shows that the λ -weight space is one dimensional. In general, all weight spaces are finite dimensional, as for a fixed $\mu \leq \lambda$, there are only finitely many ways to reach μ from λ by subtracting positive roots.

Verma modules have a universal property. Let V be a \mathfrak{g} -module with a maximal vector v^+ of weight λ . The map from \mathbb{C}_{λ} to V given by $1 \to v^+$ is a \mathfrak{b} -module homomorphism by the maximality of λ . By the universal property of the tensor product (Frobenius reciprocity), we get a \mathfrak{g} -module homomorphism from $\Delta(\lambda)$ to V such that v_{λ} maps to v^+ . If V happens to be a highest weight module of weight λ , then the above map from $\Delta(\lambda)$ to V is surjective, i.e., V is a quotient of $\Delta(\lambda)$. To summarize, highest weight modules are quotients of Verma modules.

Remark: The Verma modules may be described in an alternative way as follows. For $\lambda \in \mathfrak{h}^*$, let $I_{\lambda} \subset U(\mathfrak{g})$ be the left ideal generated by the elements of \mathfrak{b} together with $h - \lambda(h)$, $h \in \mathfrak{h}$ (The generators of I_{λ} are elements which kill v_{λ}). Then $\Delta(\lambda) \cong U(\mathfrak{g})/I_{\lambda}$. It is easy to show this isomorphism from the universal property described above.

3 Irreducible modules from the Verma modules

We will now show that an irreducible module of highest weight λ can be constructed as a quotient of the Verma module $\Delta(\lambda)$. The following lemma is the crucial step.

Lemma 3.1. Let M be a proper submodule of $\Delta(\lambda)$. Then $M = \bigoplus_{\mu < \lambda} M_{\mu}$ (Note the absence of the weight λ). In particular, $M_{\lambda} = 0$ and $M \subset \bigoplus_{\mu < \lambda} \Delta(\lambda)_{\mu}$.

Proof. Let $x \in M$. Then $x = x_1 + x_2 + \cdots + x_n$ with $x_i \in \Delta(\lambda)_{\mu_i}$ for some pairwise distinct weights μ_i . We need to show that the x_i are infact in M_{μ_i} . Suppose not, that is there is an x in M with some x_i in its decomposition not in M_{μ_i} . We may assume that the length n of the decomposition is minimal. So $n \geq 2$ and x_i is not in M for all i. Applying $h \in \mathfrak{h}$, we get

$$hx = \mu_1(h)x_1 + \cdots + \mu_n(h)x_n$$

and hence,

$$hx - \mu_1(h)x = (\mu_2(h) - \mu_1(h))x_2 + \dots + (\mu_n(h) - \mu_1(h))x_n$$

Since $hx - \mu_1(h)x$ is in M, by the minimality of n, we have $(\mu_2(h) - \mu_1(h))x_2 \in M$ for all $h \in \mathfrak{h}$. Choosing h such that $\mu_2(h) \neq \mu_1(h)$ gives $x_2 \in M$, a contradiction. This proves that M is a direct sum of its weight spaces. The inclusions

$$(0) \subseteq M_{\lambda} \subseteq \Delta(\lambda)_{\lambda} = \mathbb{C}v_{\lambda}$$

imply that if $M_{\lambda} \neq (0), v_{\lambda} \in M_{\lambda} \subset M \implies U(\mathfrak{g})v_{\lambda} = \Delta(\lambda) \subset M$, a contradiction as M is proper. This proves the lemma.

Theorem 3.2. $\Delta(\lambda)$ has a unique maximal submodule rad $(\Delta(\lambda))$. The quotient

$$L(\lambda) := \frac{\Delta(\lambda)}{\operatorname{rad}(\Delta(\lambda))}$$

is an irreducible highest weight module of weight λ .

Proof. Let $\operatorname{rad}(\Delta(\lambda))$ be the sum of all proper submodules of $\Delta(\lambda)$. By 3.1, $\operatorname{rad}(\Delta(\lambda)) \subset \bigoplus_{\mu < \lambda} \Delta(\lambda)_{\mu}$ and it is clear that this is the unique maximal submodule of $\Delta(\lambda)$. In $L(\lambda)$, the image $\overline{v_{\lambda}}$ of v_{λ} is nonzero and hence $L(\lambda)$ is an irreducible highest weight module of weight λ .

Theorem 3.3. If V is an irreducible \mathfrak{g} -module with a maximal weight λ , then $V \cong L(\lambda)$. In particular, a maximal weight of an irreducible module, if it exists, is unique.

Proof. There is a nonzero homomorphism of modules $\Pi : \Delta(\lambda) \to V$ from the universal property of $\Delta(\lambda)$. Π is surjective as V is simple. So V is isomorphic to a quotient of $\Delta(\lambda)$ by a maximal submodule (because V is simple). Now 3.2 shows that $V \cong L(\lambda)$.

Theorem 3.3 proves part (ii) of 1.4 without the finite dimensionality assumption. We also deduce from 1.6 and 3.3 that a finite dimensional irreducible module is a highest weight module.

4 Finite dimensional irreducible modules

The task now is to determine which of the irreducibles, $L(\lambda)$ constructed in Section 3 are finite dimensional. Representation theory of $\mathfrak{sl}(2,\mathbb{C})$ will play an important role in this.

For each positive root α , we know that $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ is one dimensional and that one can choose $h_{\alpha} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ so that $\alpha(h_{\alpha}) = 2$. Then $\mathfrak{g}_{\alpha} \oplus \mathbb{C}h_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ is a subalgebra of \mathfrak{g} isomorphic to $\mathfrak{sl}(2, \mathbb{C})$. It will be denoted by $\mathfrak{sl}(\alpha)$.

Theorem 4.1. If V is a finite dimensional irreducible \mathfrak{g} -module, then V has a highest weight, which is dominant and integral.

Proof. From 1.6, V has a maximal weight, say λ and 3.3 shows that $V \cong L(\lambda)$. For each positive root α , V is also an $\mathfrak{sl}(\alpha)$ -module and λ remains a maximal weight. By representation theory of $\mathfrak{sl}(2,\mathbb{C})$, a maximal vector w has non-negative integral weight: $h_{\alpha}w = mw$ for some $m \in \mathbb{Z}_{\geq 0}$. But

$$h_{\alpha}w = \lambda(h_{\alpha})w = \langle \lambda, \alpha \rangle w \implies \langle \lambda, \alpha \rangle = m \in \mathbb{Z}_{\geq 0}$$

This proves the theorem.

The converse direction is more involved.

Theorem 4.2. If $\lambda \in \mathfrak{h}^*$ is dominant and integral, $L(\lambda)$ is finite dimensional.

Proof. Note that $L(\lambda)$ is a direct sum of finite dimensional weight spaces (since $\Delta(\lambda)$ is). The strategy will be to show that the set of weights of $L(\lambda)$ is finite and this will prove the theorem.

Let $\alpha_1, \dots, \alpha_l$ be the simple roots as before and for each i, let $\{x_i, y_i, h_i\}$ be an $\mathfrak{sl}(\alpha_i)$ triple. We'll use the following identities in $U(\mathfrak{g})$ for $k \in \mathbb{Z}_{\geq 0}$:

(i)
$$[x_j, y_i^{k+1}] = 0$$
 for $i \neq j$ (ii) $[x_i, y_i^{k+1}] = -(k+1)y_i^k(k-h_i)$

Step I : For each i, $L(\lambda)$ contains a nonzero finite dimensional $\mathfrak{sl}(\alpha_i)$ -module.

Proof. Let w be a maximal vector in $L(\lambda)$. Note that $m_i = \langle \lambda, \alpha_i \rangle = \lambda(h_i)$ is a positive integer as λ is dominant integral. We claim that $u = y_i^{m_i+1} w = 0$. This is because by identity (i), for $j \neq i$,

$$x_j u = y_i^{m_i+1}(x_j w) + [x_j, y_i^{m_i+1}]w = 0$$

and by identity (ii),

$$x_i u = y_i^{m_i+1}(x_i w) + [x_i, y_i^{m_i+1}]w = -(m_i + 1)y_i^{m_i}(m_i - h_i)w = 0$$

as $h_i w = m_i w$. If $u \neq 0$, then u would be a maximal vector of weight $\lambda - (m_i + 1)\alpha_i < \lambda$, a contradiction because the maximal weight is unique (Theorem 3.3). So $W = \operatorname{span}\{w, y_i w, \dots, y_i^{m_i} w\}$ is a nonzero finite dimensional $\mathfrak{sl}(\alpha_i)$ -module in $L(\lambda)$ (The containments $h_i W \subseteq W$, $y_i W \subseteq W$ are obvious and $x_i W \subseteq W$ follows from (ii) again).

Step II : For each fixed $i, L(\lambda)$ is the sum of all finite dimensional $\mathfrak{sl}(\alpha_i)$ -modules contained in it. *Proof.* Let E be the sum of all finite dimensional $\mathfrak{sl}(\alpha_i)$ -modules contained in $L(\lambda)$. We show that E is a \mathfrak{g} -submodule of $L(\lambda)$. Along with step I that $E \neq 0$, this forces $E = L(\lambda)$. So, for $x \in \mathfrak{g}$ and $w \in E$, we need to show that $xw \in E$. Since $w \in E, w \in F$ for some finite dimensional $\mathfrak{sl}(\alpha_i)$ -module F. If $x = \sum_{\beta \in \phi \cup \{0\}} x_\beta$, $x_\beta \in \mathfrak{g}_\beta$, then $xw \in \operatorname{span}_\beta\{x_\beta F\} = K$. But K is finite dimensional and easily seen to be $\mathfrak{sl}(\alpha_i)$ -invariant $(x_iK \subset \operatorname{span}_\beta\{x_ix_\beta F\}$ and $x_ix_\beta F = x_\beta(x_iF) + [x_i, x_\beta]F \subset x_\beta F + \mathfrak{g}_{\alpha_i+\beta} \cdot F \subset K$, similarly one shows this for y_i, h_i). So, $xw \in K \subset E$ which ends the proof.

If $\Pi(\lambda)$ is the set of weights of $L(\lambda)$, we now show that the Weyl group \mathcal{W} acts on $\Pi(\lambda)$ by permutations. If this is known, $\Pi(\lambda)$ decomposes into a disjoint union of \mathcal{W} -orbits. Then it is enough to show that there are only finitely many orbits: this coupled with the fact that \mathcal{W} is finite will show that $\Pi(\lambda)$ is finite.

Step III : $\mu \in \Pi(\lambda) \implies \sigma_i \mu \in \Pi(\lambda)$ where σ_i is the reflection corresponding to α_i . Furthermore, $\dim L(\lambda)_{\mu} = \dim L(\lambda)_{\sigma_i \mu}$.

Proof. Since $L(\lambda)_{\mu}$ is finite dimensional, by Step II, there is a finite dimensional $\mathfrak{sl}(\alpha_i)$ -module F containing $L(\lambda)_{\mu}$. For $0 \neq w \in L(\lambda)_{\mu}$, on one hand, we have $h_i w = \mu(h_i) w$. But $w \in F$ is then a weight vector for h_i so by representation theory for $\mathfrak{sl}(2,\mathbb{C})$, $\mu(h_i) = \langle \mu, \alpha_i \rangle = m$ is an integer (This also proves that all weights are integral, as the preceeding argument holds for any i). Because m occurs as a weight of F, so does -m and dim $F_m = \dim F_{-m}$. If m is nonnegative, then $y_i^m w \neq 0$ and belongs to F_{-m} . But $y_i^m w \in L(\lambda)_{\mu-\langle \mu, \alpha_i \rangle \alpha_i}$ as well by (i) of 1.5, i.e, $\sigma_i \mu$ is also a weight. If m is negative, take $x_i^{-m} w$, the argument is similar. The equality of dimensions follows because if $\{w_1, \dots, w_k\}$ is a basis for $L(\lambda)_{\mu}$, then $\{w_1, \dots, w_k\}$ are linearly independent in F_m , so applying y_i^m or x_i^{-m} leaves them linearly independent and sends them to $L(\lambda)_{\mu-\langle \mu, \alpha_i \rangle \alpha_i}$ so dim $L(\lambda)_{\mu} \leq \dim L(\lambda)_{\sigma_i\mu}$. Applying the same to $\sigma_i \mu$ gives dim $L(\lambda)_{\sigma_i \mu} \leq \dim L(\lambda)_{\sigma_i^2 \mu} = \dim L(\lambda)_{\mu}$ which gives the equality.

Step IV : For $\mu \in \Pi(\lambda)$, its Weyl orbit $\mathcal{W}\mu$ contains a dominant weight. *Proof.* The orbit $\mathcal{W}\mu$ is finite, so we can choose $\eta \in \mathcal{W}\mu$ maximal wrt the ordering \leq . Then η is dominant. For if not, $\langle \eta, \alpha_i \rangle \in \mathbb{Z}_{\leq 0}$ for some *i*. Then $\sigma_i \eta \in \mathcal{W}\mu$ and $\sigma_i \eta = \eta - \langle \eta, \alpha_i \rangle \alpha_i > \eta$, contradicting the choice of η .

Step V : The set $S = \{\eta \mid \eta \text{ is dominant}, \eta \leq \lambda\}$ is finite.

Proof. If η is in the above set, $\lambda - \eta$ is a sum of positive roots with nonnegative integer coefficients, hence η lies in a discrete set. Also, $\lambda + \eta$ is dominant, so $\langle \lambda + \eta, \alpha_i \rangle \geq 0$ for all *i*, in particular $(\lambda + \eta, \lambda - \eta) \geq 0 \implies (\lambda, \lambda) \geq (\eta, \eta)$. So η lies in a compact set as well (in the closed ball of radius $\sqrt{(\lambda, \lambda)}$). So *S* is in the intersection of a discrete set and a compact set, a finite set.

From Step IV, any W-orbit of $\Pi(\lambda)$ contains an element of S. Step V implies that the number of orbits is finite and this finishes the proof.

References

[1] James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1980.