
THE THEOREM OF HIGHEST WEIGHT

Atharva Korde

The goal of this note is to prove that the finite dimensional irreducible representations of a complex, semisim-
ple (finite dimensional) Lie algebra are classified by their highest weight, which we shall explain in more detail
below.

The following notation will be used: Let g be a finite dimensional complex semisimple Lie algebra. Let h a
Cartan subalgebra of g, Φ the set of roots of g wrt h, ∆ a basis for Φ consisting of the simple roots {α1, · · · , αl}
and Φ+, Φ− the subsets of positive, resp. negative roots wrt ∆. A partial order on h∗ is defined as follows: for
λ, µ ∈ h∗, µ ≤ λ iff λ− µ =

∑
α∈Φ+ nαα, nα ∈ Z≥0 ∀ α ∈ Φ+.

1 Some definitions and the theorem

If V is a representation of h, then for λ ∈ h∗, the λ-weight space of V , Vλ is defined by:

Vλ = {v ∈ V | hv = λ(h)v,∀ h ∈ h}

If Vλ 6= 0, λ is called a weight of V .

Definition 1.1. A highest weight for a representation V of g is a weight λ such that for all weights µ of V ,
we have µ ≤ λ.

It is clear from the definition that a highest weight, if exists, is unique, so we may speak of ‘the’ highest
weight of a representation. If λ is the highest weight of V , then any nonzero v in Vλ is called a highest weight
vector of V . Further, if V is generated as a g-module by a highest weight vector, then V is called a highest
weight module.

Definition 1.2. A weight vector w ∈ V (of weight λ, say) such that gα · w = 0 for all α ∈ Φ+ is called a
maximal vector and λ will be called a maximal weight.

Definition 1.3. Let λ ∈ h∗. λ is called integral if 〈λ, α〉 ∈ Z, ∀ α ∈ ∆. λ is called dominant if 〈λ, α〉 ≥ 0, ∀
α ∈ Φ+ or equivalently, ∀ α ∈ ∆.

We can now state the theorem:

Theorem 1.4. (i) If V is a finite dimensional irreducible g-module, then V has a highest weight, which is
dominant and integral. In this case, V is a highest weight module.

(ii) If V, V ′ are finite dimensional irreducible g-modules with the same highest weight, then they are iso-
morphic.

(iii) Each dominant integral element of h∗ is the highest weight of a finite dimensional irreducible g-module.

This explains the statement that the irreducible finite dimensional g-modules are classified according to
their highest weight. Of course, it should be remembered that all of these definitions depend on our initial
choices of h and Φ+.

We end the section with a simple proposition (without proof) and a useful corollary:

Proposition 1.5. For a g-module V ,
(i) For all β, λ ∈ h∗, gβ · Vλ ⊂ Vβ+λ.
(ii) The sum

∑
λ∈h∗ Vλ is direct and is an g-submodule of V .

(iii) If dimV <∞, then V =
⊕

λ∈h∗ Vλ.

Note that (i) implies that a highest weight vector is maximal but the converse is not true. But the weaker
notion of maximal vector is useful and we will use the following corollary.

Corollary 1.6. If dimV <∞, then V has a maximal weight.

Proof. By (iii) of 1.5, there are only finitely many weights in the direct sum decomposition, so there exists a
maximal weight.
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2 Verma Modules

In this section, we define for each λ ∈ h∗ the highest weight modules ∆(λ), called the Verma modules
(named after Dayanand Verma who introduced them in his thesis). These will be defined by an induced mod-
ule construction.

Let U be the functor from the category of Lie algebras to the category of associative algebras, taking a Lie
algebra to its universal enveloping algebra. Let b = h ⊕

(⊕
α∈Φ+ gα

)
and n =

⊕
α∈Φ+ g−α be the Borel and

nilpotent subalgebras of g associated to Φ+. Hence as vector spaces, g = n⊕ b. By the Poincare-Birkhoff-Witt
(PBW) theorem, the induced maps U(b)→ U(g) and U(n)→ U(g) are injective.

Proposition 2.1. The injections above give an isomoprhism

U(g) ∼= U(n)⊗C U(b)

as vector spaces as well as (U(n), U(b)) bimodules.

Since b is solvable, any finite dimensional irreducible b-module must be one dimensional (by Lie’s theorem),
so equals a single weight space of weight λ say, Cλ with action h · 1 = λ(h) and gα · Cλ = 0 for α ∈ Φ+.
Conversely, for any λ ∈ h∗, we define the one dimensional b-module C by h ·1 = λ(h) and gα ·C = 0 for α ∈ Φ+.
It is easy to check that this defines a b-module structure on C and hence, is Cλ.

Definition 2.2. The Verma module ∆(λ) associated to λ is defined by:

∆(λ) = Indg
bCλ = U(g)⊗U(b) Cλ

Set vλ = 1⊗ 1. It is called the canonical generator of ∆(λ). The following proposition explains why.

Proposition 2.3. Resgn∆(λ) is a free U(n)-module of rank 1 by the isomorphism n→ nvλ. In particular, ∆(λ)
is infinte dimensional.

Proof. As a U(n)-module, we have the isomorphisms

∆(λ) ∼= (U(n)⊗C U(b))⊗U(b) Cλ ∼= U(n)⊗C
(
U(b)⊗U(b) Cλ

) ∼= U(n)⊗C Cλ ∼= U(n)

where we have used the associativity of the tensor product and the isomorphism is clear from the above
steps.

Proposition 2.4. ∆(λ) has the weight space decomposition

∆(λ) =
⊕
µ≤λ

∆(λ)µ

Further, all the weight spaces are finite dimensional and the λ-weight space is the one dimensional space Cvλ.
∆(λ) is a highest weight module of weight λ.

Proof. Fix an ordering of the positive roots α1, α2, · · · , αr and for each i pick nonzero yi ∈ g−αi
. By the PBW

theorem, a basis for U(n) is given by monomials of the form ya11 ya22 . . . yarr with ai ∈ Z≥0. So by 2.3, a basis for
∆(λ) is given by the elements (ya11 ya22 . . . yarr )vλ.

For h ∈ h,
hvλ = h(1⊗ 1) = h⊗ 1 = 1⊗ (h.1) = 1⊗ λ(h) = λ(h)(1⊗ 1) = λ(h)vλ

where the equality h ⊗ 1 = 1 ⊗ (h.1) is because U(h) injects into U(b). Hence, vλ ∈ ∆(λ)λ. By (i) of 1.5,
the basis element (ya11 ya22 . . . yarr )vλ belongs to ∆(λ)λ−

∑r
i=1 aiαi

. This shows that all weights are ≤ λ and also
shows that the λ-weight space is one dimensional. In general, all weight spaces are finite dimensional, as for a
fixed µ ≤ λ, there are only finitely many ways to reach µ from λ by subtracting positive roots.

Verma modules have a universal property. Let V be a g-module with a maximal vector v+ of weight λ. The
map from Cλ to V given by 1→ v+ is a b-module homomorphism by the maximality of λ. By the universal prop-
erty of the tensor product (Frobenius reciprocity), we get a g-module homomorphism from ∆(λ) to V such that
vλ maps to v+. If V happens to be a highest weight module of weight λ, then the above map from ∆(λ) to V is
surjective, i.e., V is a quotient of ∆(λ). To summarize, highest weight modules are quotients of Verma modules.

Remark: The Verma modules may be described in an alternative way as follows. For λ ∈ h∗, let Iλ ⊂ U(g) be
the left ideal generated by the elements of b together with h− λ(h), h ∈ h (The generators of Iλ are elements

which kill vλ). Then ∆(λ) ∼= U(g)�Iλ. It is easy to show this isomorphism from the universal property described
above.

2



3 Irreducible modules from the Verma modules

We will now show that an irreducible module of highest weight λ can be constructed as a quotient of the
Verma module ∆(λ). The following lemma is the crucial step.

Lemma 3.1. Let M be a proper submodule of ∆(λ). Then M =
⊕

µ<λMµ (Note the absence of the weight
λ). In particular, Mλ = 0 and M ⊂

⊕
µ<λ ∆(λ)µ.

Proof. Let x ∈M . Then x = x1 + x2 + · · ·xn with xi ∈ ∆(λ)µi
for some pairwise distinct weights µi. We need

to show that the xi are infact in Mµi
. Suppose not, that is there is an x in M with some xi in its decomposition

not in Mµi
. We may assume that the length n of the decompostion is minimal. So n ≥ 2 and xi is not in M

for all i. Applying h ∈ h, we get
hx = µ1(h)x1 + · · ·µn(h)xn

and hence,
hx− µ1(h)x = (µ2(h)− µ1(h))x2 + · · ·+ (µn(h)− µ1(h))xn

Since hx − µ1(h)x is in M , by the minimality of n, we have (µ2(h) − µ1(h))x2 ∈ M for all h ∈ h. Choosing
h such that µ2(h) 6= µ1(h) gives x2 ∈ M , a contradiction. This proves that M is a direct sum of its weight
spaces. The inclusions

(0) ⊆Mλ ⊆ ∆(λ)λ = Cvλ
imply that if Mλ 6= (0), vλ ∈Mλ ⊂M =⇒ U(g)vλ = ∆(λ) ⊂M , a contradiction as M is proper. This proves
the lemma.

Theorem 3.2. ∆(λ) has a unique maximal submodule rad(∆(λ)). The quotient

L(λ) := ∆(λ)�rad(∆(λ))

is an irreducible highest weight module of weight λ.

Proof. Let rad(∆(λ)) be the sum of all proper submodules of ∆(λ). By 3.1, rad(∆(λ)) ⊂
⊕

µ<λ ∆(λ)µ and it
is clear that this is the unique maximal submodule of ∆(λ). In L(λ), the image vλ of vλ is nonzero and hence
L(λ) is an irreducible highest weight module of weight λ.

Theorem 3.3. If V is an irreducible g-module with a maximal weight λ, then V ∼= L(λ). In particular, a
maximal weight of an irreducible module, if it exists, is unique.

Proof. There is a nonzero homomorphism of modules Π : ∆(λ) → V from the universal property of ∆(λ). Π
is surjective as V is simple. So V is isomorphic to a quotient of ∆(λ) by a maximal submodule (because V is
simple). Now 3.2 shows that V ∼= L(λ).

Theorem 3.3 proves part (ii) of 1.4 without the finite dimensionality assumption. We also deduce from 1.6
and 3.3 that a finite dimensional irreducible module is a highest weight module.

4 Finite dimensional irreducible modules

The task now is to determine which of the irreducibles, L(λ) constructed in Section 3 are finite dimensional.
Representation theory of sl(2,C) will play an important role in this.

For each positive root α, we know that [gα, g−α] is one dimensional and that one can choose hα ∈ [gα, g−α]
so that α(hα) = 2. Then gα ⊕ Chα ⊕ g−α is a subalgebra of g isomorphic to sl(2,C). It will be denoted by
sl(α).

Theorem 4.1. If V is a finite dimensional irreducible g-module, then V has a highest weight, which is dominant
and integral.

Proof. From 1.6, V has a maximal weight, say λ and 3.3 shows that V ∼= L(λ). For each positive root α, V is
also an sl(α)-module and λ remains a maximal weight. By representation theory of sl(2,C), a maximal vector
w has non-negative integral weight: hαw = mw for some m ∈ Z≥0. But

hαw = λ(hα)w = 〈λ, α〉w =⇒ 〈λ, α〉 = m ∈ Z≥0

This proves the theorem.

The converse direction is more involved.
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Theorem 4.2. If λ ∈ h∗ is dominant and integral, L(λ) is finite dimensional.

Proof. Note that L(λ) is a direct sum of finite dimensional weight spaces (since ∆(λ) is). The strategy will be
to show that the set of weights of L(λ) is finite and this will prove the theorem.

Let α1, · · · , αl be the simple roots as before and for each i, let {xi, yi, hi} be an sl(αi) triple. We’ll use the
following identities in U(g) for k ∈ Z≥0:
(i) [xj , y

k+1
i ] = 0 for i 6= j (ii) [xi, y

k+1
i ] = −(k + 1)yki (k − hi)

Step I : For each i, L(λ) contains a nonzero finite dimensional sl(αi)-module.
Proof. Let w be a maximal vector in L(λ). Note that mi = 〈λ, αi〉 = λ(hi) is a positive integer as λ is dominant
integral. We claim that u = ymi+1

i w = 0. This is because by identity (i), for j 6= i,

xju = ymi+1
i (xjw) + [xj , y

mi+1
i ]w = 0

and by identity (ii),

xiu = ymi+1
i (xiw) + [xi, y

mi+1
i ]w = −(mi + 1)ymi

i (mi − hi)w = 0

as hiw = miw. If u 6= 0, then u would be a maximal vector of weight λ − (mi + 1)αi < λ, a contradiction
because the maximal weight is unique (Theorem 3.3). So W = span{w, yiw, · · · , ymi

i w} is a nonzero finite
dimensional sl(αi)-module in L(λ) (The containments hiW ⊆W , yiW ⊆W are obvious and xiW ⊆W follows
from (ii) again).

Step II : For each fixed i, L(λ) is the sum of all finite dimensional sl(αi)-modules contained in it.
Proof. Let E be the sum of all finite dimensional sl(αi)-modules contained in L(λ). We show that E is a
g-submodule of L(λ). Along with step I that E 6= 0, this forces E = L(λ). So, for x ∈ g and w ∈ E, we need
to show that xw ∈ E. Since w ∈ E, w ∈ F for some finite dimensional sl(αi)-module F . If x =

∑
β∈φ∪{0} xβ ,

xβ ∈ gβ , then xw ∈ spanβ{xβF} = K. But K is finite dimensional and easily seen to be sl(αi)-invariant
(xiK ⊂ spanβ{xixβF} and xixβF = xβ(xiF ) + [xi, xβ ]F ⊂ xβF + gαi+β · F ⊂ K, similarly one shows this for
yi, hi). So, xw ∈ K ⊂ E which ends the proof.

If Π(λ) is the set of weights of L(λ), we now show that the Weyl group W acts on Π(λ) by permutations.
If this is known, Π(λ) decomposes into a disjoint union of W-orbits. Then it is enough to show that there are
only finitely many orbits: this coupled with the fact that W is finite will show that Π(λ) is finite.

Step III : µ ∈ Π(λ) =⇒ σiµ ∈ Π(λ) where σi is the reflection corresponding to αi. Furthermore,
dimL(λ)µ = dimL(λ)σiµ.
Proof. Since L(λ)µ is finite dimensional, by Step II, there is a finite dimensional sl(αi)-module F containing
L(λ)µ. For 0 6= w ∈ L(λ)µ, on one hand, we have hiw = µ(hi)w. But w ∈ F is then a weight vector for hi
so by representation theory for sl(2,C), µ(hi) = 〈µ, αi〉 = m is an integer (This also proves that all weights
are integral, as the preceeding argument holds for any i). Because m occurs as a weight of F , so does −m
and dimFm = dimF−m. If m is nonnegative, then ymi w 6= 0 and belongs to F−m. But ymi w ∈ L(λ)µ−〈µ,αi〉αi

as well by (i) of 1.5, i.e, σiµ is also a weight. If m is negative, take x−mi w, the argument is similar. The
equality of dimensions follows because if {w1, · · · , wk} is a basis for L(λ)µ, then {w1, · · · , wk} are linearly
independent in Fm, so applying ymi or x−mi leaves them linearly independent and sends them to L(λ)µ−〈µ,αi〉αi

so dimL(λ)µ ≤ dimL(λ)σiµ. Applying the same to σiµ gives dimL(λ)σiµ ≤ dimL(λ)σ2
i µ

= dimL(λ)µ which
gives the equality.

Step IV : For µ ∈ Π(λ), its Weyl orbit Wµ contains a dominant weight.
Proof. The orbit Wµ is finite, so we can choose η ∈ Wµ maximal wrt the ordering ≤. Then η is dominant. For
if not, 〈η, αi〉 ∈ Z<0 for some i. Then σiη ∈ Wµ and σiη = η − 〈η, αi〉αi > η, contradicting the choice of η.

Step V : The set S = {η | η is dominant, η ≤ λ} is finite.
Proof. If η is in the above set, λ−η is a sum of positive roots with nonnegative integer coefficients, hence η lies in a
discrete set. Also, λ+η is dominant, so 〈λ+η, αi〉 ≥ 0 for all i, in particular (λ+η, λ−η) ≥ 0 =⇒ (λ, λ) ≥ (η, η).
So η lies in a compact set as well (in the closed ball of radius

√
(λ, λ)). So S is in the intersection of a discrete

set and a compact set, a finite set.

From Step IV, any W-orbit of Π(λ) contains an element of S. Step V implies that the number of orbits is
finite and this finishes the proof.
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