
QUADRATIC RECIPROCITY : A SPECIAL CASE OF ARTIN

RECIPROCITY

Atharva Korde

In 1801, C.F.Gauss in his book Disquisitiones Arithmeticae, published the first two proofs of the law of
quadratic reciprocity, which states that for distinct odd primes p and q,(
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or equivalently (
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)
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where q* = (−1)

q−1
2 q.

Consequently, laws for higher powers like cubic and quartic reciprocity were investigated and proved which led
to Hilbert asking if a general reciprocity law exists for algebraic number fields. Hilbert’s question, numbered
9th on his list of 23 problems, was answered partially by E.Artin in the 1920s when he proved his reciprocity
theorem. In this note, we shall explain Artin’s reciprocity theorem and show that quadratic reciprocity follows
as a special case.

1 Preliminaries : The Legendre Symbol and Gauss Sums

Definition 1.1. Fix an odd prime p. The Legendre symbol,(
·
p

)
: F×p → {1,−1}

is defined as follows: For a ∈ F×p , (ap ) is 1 if a is a square in F×p and −1 otherwise. This definition is extended

to the integers by setting (np ) := 0 if p | n and (np ) is defined to be the Legendre symbol evaluated at n (mod p)

if p - n.

Proposition 1.2. (1) ( ·p ) is a group homomorphism.

(2) For p - n, (np ) ≡ n
p−1
2 (mod p) and hence (−1

p ) = (−1)
p−1
2 .

Let ζp be a primitive p-th root of unity. The next Gauss sum was computed in class.

Proposition 1.3. For an odd prime p, if

g =
∑
a∈F×

p

(
a

p

)
ζap

then g2 = p*. Thus Q(
√
p*) is the unique quadratic subfield of Q(ζp).

2 Frobenius Elements and the Artin Map

Let K be a number field and L/K a finite Galois extension of degree n with Galois group G = Gal(L/K).
Let OK , resp. OL be the rings of integers in K, resp L. Let p be a nonzero prime ideal in OK and let
P1,P2, . . . ,Pg be the primes in OL lying over p. Recall the following facts:

(1) G acts transitively on the set {P1,P2, . . . ,Pg} and the decomposition group D(Pi/p) is defined to be
the stabilizer of Pi.

(2) The ramification indices, e(P1/p) = · · · = e(Pg/p) = e are all equal and so are the residue field degrees,
f(P1/p) = · · · = f(Pg/p) = f . In OL, p factorizes as pOL = (P1 · · · Pg)e and n = efg.

(3) For each i = 1, 2, . . . , g, we have the natural map

εi : D(Pi/p)→ Gal(OL/Pi/OK/p)
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εi(σ) = σ̄ defined by σ̄(x̄) := σ(x) for all x̄ = x + Pi ∈ OL/Pi. εi is a surjective group homomorphism with
kernel equal to the inertia group T (Pi/p) and |T (Pi/p)| = e.

Now assume p is unramified, so that e = 1. Then εi is an isomorphism. For two primes Pi,Pj over p,
let τ ∈ G be such that τ(Pi) = Pj . The decomposition groups D(Pi/p) and D(Pj/p) are conjugate with
the map cτ : D(Pi/p) → D(Pj/p), cτ (σ) := τστ−1 being an isomorphsim. τ also induces the natural map
τ̄ : OL/Pi → OL/Pj , τ̄(y + Pi) := τ(y) + Pj . τ̄ is a ring homomorphism which fixes OK/p pointwise and is

infact an isomorphism with inverse given by τ−1. Thus, τ̄ induces an isomorphism between Gal(OL/Pi/OK/p)
and Gal(OL/Pj/OK/p) via the map cτ̄ which sends σ̄ ∈ Gal(OL/Pi/OK/p) to τ̄ σ̄τ̄−1 ∈ Gal(OL/Pj/OK/p). We then
have a commutative diagram.

Lemma 2.1. The following diagram commutes, where all arrows are isomorphisms.

D(Pi/p) Gal(OL/Pi/OK/p)

D(Pj/p) Gal(OL/Pi/OK/p)

cτ

εi

εj

cτ̄

Proof. For σ ∈ D(Pi/p), we wish to show that τστ−1 = τ̄ σ̄τ̄−1. But this is obvious as for ȳ = y+Pj ∈ OL/Pj ,
τστ−1(ȳ) = τστ−1(y) + Pj and

τ̄ σ̄τ̄−1(ȳ) = τ̄ σ̄τ−1(ȳ) = τ̄ σ̄(τ−1(y) + Pi) = τ̄(στ−1(y) + Pi) = τστ−1(y) + Pj

proving the claim.

OL/Pi and OK/p are finite fields so let Np := |OK/p|. Then the Galois group Gal(OL/Pi/OK/p) has the
Frobenius map Fi : a→ aNp.

Definition 2.2. The element Frob(Pi/p) is defined to be the pulback of Fi via εi. In other words, Frob(Pi/p)
is the unique element σ in D(Pi/p) satisfying σ(x) ≡ xNp (mod Pi) for all x ∈ OL.

Lemma 2.3. {Frob(P1/p),Frob(P2/p) · · · ,Frob(Pg/p)} is a conjugacy class in G = Gal(L/K). Denote this
by Frob(p).

Proof. In view of the commutative diagram in lemma 2.1, it suffices to show that Fi and Fj map to each other
under the right vertical isomorphism. This is verified by the following computation:

τ̄Fiτ−1(ȳ) = τ̄Fi(τ−1(y)) = τ̄(τ−1(y))Np = τ̄(τ−1(yNp)) = ττ−1(yNp) = ȳNp

and hence τ̄Fiτ−1 = Fj .

From here, suppose L/K is Abelian and let p be unramified, as before. By lemma 2.3, the conjugacy class
Frob(p) is a singleton set, whose only element will again be called Frob(p) by minor abuse of notation.

Definition 2.4. The Artin symbol (p, L/K) is defined to be Frob(p) ∈ Gal(L/K). Concretely, (p, L/K) is the
unique element σ ∈ G satisfying σ(x) ≡ xNp (mod P) for some prime (and hence for all primes) P over p.

Lemma 2.5. Let K,L, p as before and let E be a subextension of L/K (So that E/K is Abelian as well and
p is unramified in E). Then,

resE(p, L/K) = (p, E/K)

where resE is restriction to E.

Proof. Let σ = (p, L/K). Let a be a prime in E over p and P be a prime in L over a. Then by the definitions,
σ(x) ≡ xNp (mod P) for all x ∈ OL. In particular, σ(x) ≡ xNp (mod P) for all x ∈ OE . But for x ∈ OE , σ(x)
and xNp ∈ OE as well, hence σ(x)− xNp ∈ P ∩ OE = a, proving that resEσ = (p, E/K).

Let c be a cycle in OK i.e., c is a formal product c∞ ·c0 where c0 is an integral ideal of OK and c∞ is a formal
product of the real primes, with the exponent of each real prime being 0 or 1. Define I(c) to be the subgroup
of IK consisting of those fractional ideals coprime to c0. It is clear that I(c) is the free Abelian group generated
by the prime ideals not dividing c0. If c is divisible by the ramified primes, the Artin symbol is defined for all
the primes in I(c). In that case, we get a map

Arc : I(c)→ Gal(L/K)
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by extending the definition p→ (p, L/K) multiplicatively. This is the Artin map corresponding to c.

There are two subgroups of I(c) of main interest:
(1) Define Pc to be the subgroup consisting of principal ideals J such that J = (α) with α ≡ 1 (mod c). The
meaning of α ≡ 1 (mod c) is η(α) > 0 for all real primes η | c∞ and vq(α− 1) ≥ vq(c0) for every q | c0.
(2) Define

N (c) := {NL
Kβ | β an ideal of OL, (β, c0OL) = (1)}

This is the subgroup of norms of ideals which are coprime to c0. The norm NL
Kβ :=

∏
σ∈G σ(β) is an ideal in

OK .
We can now state the main theorem of this note:

Theorem 2.6. (Artin Reciprocity Theorem) Let L/K be an Abelian extension of number fields. Then, for
any cycle c divisible by the ramified primes, the Artin map Arc is surjective. Further there exists a cycle f in
OK (called admissible) such that Arf has kernel equal to PfN (f), i.e.,

I(f)/PfN (f) ∼= Gal(L/K)

3 Proof of Quadratic Reciprocity

Lemma 3.1. Let q be an odd prime and p 6= q any other prime. Then (p,Q(ζq)/Q) is the map ζq → ζpq .

Proof. Let σp be the map on the RHS. Let L = Q(ζq) and x ∈ OL. Write x = a0 + a1ζq + · · ·+ aq−2ζ
q−2
q and

let P lie over p. Then pOL ⊆ P and modulo pOL,

xp = ap0 + ap1ζ
p
q + · · ·+ aq−2ζ

(q−2)p
q = a0 + a1ζ

p
q + · · ·+ aq−2ζ

(q−2)p
q = σp(x)

so σp(x) ≡ xp (mod P). By the defining property of (p,Q(ζq)/Q), this symbol must be equal to σp.

Corollary 3.2. The cycle f = q∞ is an admissible cycle for Q(ζq)/Q. (Here ∞ is the usual absolute value on
R)

Proof. By Artin reciprocity, Arq∞ is surjective and by Lemma 3.1, we see that Arq∞ sends a fractional ideal
J = (ab ) (coprime to q∞) to the map σ−1

b σa. So J is in the kernel of the Artin map ⇐⇒ σa = σb ⇐⇒ a ≡ b
(mod q). The last congruence holds iff vq(

a
b − 1) ≥ 1 because q - b. Hence I(q∞)/Pq∞ ∼= Gal(L/Q).

We know that E = Q(
√
q*) is a subfield of L (proposition 1.3) and Gal(E/Q) is identified with {±1} by

φ : η → η(
√
q*)√
q*

. The only ramified finite prime in E is qZ. Let ArLf and ArEf be the Artin maps to Gal(L/Q)

and Gal(E/Q) respectively. By Artin reciprocity and Lemma 2.4, we have a commutative diagram in which
the two maps from I(f) are surjective.

Gal(L/Q)

I(f) Gal(E/Q)

resE

ArEf

ArLf

With the above identification, let ψ = φ ◦ArEf .

Lemma 3.3. For p an odd prime, ψ(pZ) =
(
q*

p

)
.

Proof. Let (p,E/Q) = η and a a prime in E above p. By the definitions and Proposition 1.2 (2),

η(
√
q*) ≡ (

√
q*)p ≡ (q*)

p−1
2

√
q* ≡

(
q*

p

)√
q* (mod a)

as pOE ⊆ a. This implies √
q*

(
η(
√
q*)√
q*
−
(
q*

p

))
∈ a

but
√
q* is not in a (If it was, then (

√
q*)2 = q* ∈ a =⇒ p, q ∈ a, a contradiction as then a would generate

the entire ring). So
η(
√
q*)√
q*
−
(
q*

p

)
∈ a. This number is either ±2 or 0 and the same argument shows that it

can’t be ±2, proving the lemma.
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Lemma 3.3 gives us a formula for ψ and the following commutative diagram:

I(f) Gal(E/Q)

{±1}

ArEf

( q∗
· )

φ

But putting together the two commutative diagrams, we get ψ = φ ◦ resE ◦ArLf . For the final step, observe
that φ ◦ resE(σp) = (pq ) because σp maps to 1 ⇐⇒ σp ∈ Gal(L/E) ∼= (F×q )2 ⇐⇒ p is a square in F×q . Hence,

ψ(pZ) = (pq ). By computing ψ in two ways we have obtained

ψ(pZ) =

(
q*

p

)
=

(
p

q

)
completing the proof of quadratic reciprocity.
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