Determinants

October 22, 2024

1 Motivation

Consider a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$. We want to find a way to measure how the transformation affects areas. For example, the transformation $T(x, y) = (x + 2y, y)$ leaves the area of the unit square S unchanged:

Whereas the transformation $Q(x, y) = (x, 3y)$ scales its area by a factor of 3:

A rotation $R(x, y) = (-y, x)$ leaves the area invariant:

So we would like to assign the number 1 to the matrix $\begin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}$, the number 3 to $\begin{pmatrix} 1 & 0 \ 0 & 3 \end{pmatrix}$ and the number 1 to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. You might notice that these matrices (almost) correspond to the different types of row operations.

2 Definitions

We claim there is a unique function det : $\mathbb{F}^{n \times n} \to \mathbb{F}$ satisfying the following properties ($M \in \mathbb{F}^{n \times n}$ is an unique matrix). $\mathbb{F}^{n \times n}$ is an $n \times n$ matrix):

- det $I_n = 1$, where I_n is the $n \times n$ identity matrix,
- Scaling a row of M by λ multiplies det by λ ,
- Adding a multiple of a row to another row leaves det unchanged,
- swapping two rows multiplies det by -1 .

Example 2.1. Let's say we want to compute $\det \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$. We can argue as follows:

$$
\det\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix} = -\det\begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}
$$

= -\det\begin{pmatrix} 1 & 4 \\ 0 & -7 \end{pmatrix}
= 7 \det\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}
= 7 \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
= 7.

Note: we have not actually proved that this is well-defined (we will do this much later in the class)!

Example 2.2. Let's compute det
$$
\begin{pmatrix} a & b \ c & d \end{pmatrix}
$$
. If $a \neq 0$, then
\n
$$
\det \begin{pmatrix} a & b \ c & d \end{pmatrix} = a \det \begin{pmatrix} 1 & b/a \ c & d \end{pmatrix}
$$
\n
$$
= a \det \begin{pmatrix} 1 & b/a \ 0 & d-(bc)/a \end{pmatrix}
$$
\n
$$
= (ad - bc) \det \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}
$$
\n
$$
= ad - bc.
$$

and if $a = 0$ *, then*

$$
\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \det\begin{pmatrix} 0 & b \\ c & d \end{pmatrix}
$$

= -\det\begin{pmatrix} c & d \\ 0 & b \end{pmatrix}
= -c \det\begin{pmatrix} 1 & d/c \\ 0 & b \end{pmatrix}
= -bc \det\begin{pmatrix} 1 & d/c \\ 0 & 1 \end{pmatrix}
= -bc \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
= -bc
= ad - bc.

3 Properties

 $\bf{Definition 3.1.}$ *A matrix* $M \in \mathbb{F}^{n \times n}$ *is called upper triangular if* $M_{i,j} = 0$ *whenever* $i > j$ *and lower triangular if* $M_{i,i} = 0$ *whenever* $j > i$ *.*

Proposition 3.2. *If* M *is a triangular matrix, then* detM *is the product of the diagonal entries.*

Proof. If none of the diagonal entries are zero, then RREF(M) = I_n, the identity matrix, and the scaling row operations that we need are precisely the product of the diagonal entries.

If some diagonal entries are zero, then $RREF(M)$ has a zero row, since not every row has a pivot. Then det(M) = $-\det(M)$, since we can multiply a zero row by -1 without chaning the matrix, and this implies that $det(M) = 0$, which is also the product of the diagonal entries. \Box

Theorem 3.3. *Magical properties of* det*:*

- 1. *A matrix* $M \in \mathbb{F}^{n \times n}$ *is invertible if and only if det* $M \neq 0$ *.*
- 2. $det(AB) = det(A) det(B)$.
- 3. $det(A^{-1}) = \frac{1}{det(A)}$.
- *Proof.* 1. You will prove in HW5 that M is invertible if and only if RREF(M) = I_n . The row operations don't change if the determinant is zero or not, and the determinant of a matrix whose RREF is not I_n is zero by the proposition above.

 \Box

- 2. You can prove this with what we prove in HW5 and a little bit of extra work.
- 3. This follows from the above two.