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MATH 223 — Final Exam — 150 minutes

18th December 2024

� The test consists of 17 pages and 14 questions worth a total of 0 marks.

� This is a closed-book examination. None of the following are allowed:
documents, cheat sheets or electronic devices of any kind (including calcu-
lators, phones, smart watches, etc.)

� No work on this page will be marked.

� Fill in the information below before turning to the questions.
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Please do not write on this page — it will not be marked.

Additional instructions

� Please use the spaces indicated.

� If you require extra paper then put up your hand and ask your instructor.

– You must put your name and student number on any extra pages.

– You must indicate the test-number and question-number.

– Please do this on both sides of any extra pages.

� Please do not dismember your test. You must submit all pages.

Cheat sheet

These are the most important definitions that we encountered:

� A list v⃗1, . . . v⃗m of vectors is linearly independent if

a1v⃗1 + . . .+ amv⃗m = 0⃗

has only the trivial solution a1 = . . . = am = 0.

� The span of a list v⃗1, . . . v⃗m is the set

{a1v⃗1 + . . .+ amv⃗m ∈ V | ai ∈ F}

� A basis of a vector space is a linearly independent spanning list.

� The dimension of a vector space is the number of elements in a basis.

� For T ∈ L(V,W ), the null space of T , denoted null(T ) is

null(T ) = {v⃗ ∈ V | T (v⃗) = 0⃗}.

� For T ∈ L(V,W ), the range of T , denoted range(T ) is

range(T ) = {T (v⃗) | v⃗ ∈ V }.

� A linear map T ∈ L(V,W ) is called invertible if there exists a linear map
S ∈ L(W,V ) such that ST is the identity on V and TS is the identity on
W .

� Suppose T ∈ L(V ). A nonzero vector v⃗ ∈ V is called an eigenvector of T
corresponding to the eigenvalue λ ∈ F if

T (v⃗) = λv⃗.
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� Suppose V is finite-dimensional and T ∈ L(V ). The minimal polynomial
of T is the unique monic polynomial p ∈ P(F) of smallest degree such that
p(T ) = 0V is the zero operator.

� Two vectors v⃗ and w⃗ are orthogonal in an inner product space if

⟨v⃗, w⃗⟩ = 0.

� A list of vectors is orthonormal if each vector v⃗ in the list has ⟨vecv, v⃗⟩ = 1
and is orthogonal to all the other vectors in the list.

� Suppose T ∈ L(V ). A basis of V is called a Jordan basis for T if with
respect to this basis T has a block diagonal matrixA1 0

. . .

0 Ap


in which each Ak is an upper-triangular matrix of the form

Ak =


λk 1 0

0
. . . . . .

. . . 1
0 λk

 .

� An m-linear form on V is a function β : V m → F that is linear in each
slot when the other slots are held fixed. The set of m-linear forms on V is
denoted by V (m).

� An m-linear form α on V is called alternating if α(v⃗1, . . . , vecvm) = 0
whenever v⃗1, . . . , v⃗m is a list of vectors in V with v⃗j = v⃗k for some j ̸= k.

The set of alternating m-linear forms is denoted by V
(m)
alt .

� The determinant detT of an operator T ∈ L(V ) is the unique scalar in F
such that

α(T v⃗1, . . . , T v⃗m) = (detT )α(v⃗1, . . . , v⃗m)

for all α ∈ V
(dimV )
alt .
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1. Let

U =

{
p ∈ P3(R)

∣∣∣∣ ∫ 1

0

p(x) dx = p(1)

}
.

(a) Prove that U is a subspace.

Solution: We check the conditions:

� For the zero polynomial 0⃗(x), we have
∫ 1

0
0⃗(x) dx = 0 = 0⃗(1), so

0⃗ ∈ U .

� If p, q ∈ U , then
∫ 1

0
(p + q)(x) dx =

∫ 1

0
p(x) dx +

∫ 1

0
q(x) dx =

p(1) + q(1) = (p+ q)(1), so p+ q ∈ U .

� If p ∈ U, λ ∈ R, we have
∫ 1

0
(λp)(x) dx = λ

∫ 1

0
p(x) dx = λp(1) =

(λp)(1) so λp ∈ U .

Therefore U is a subspace.

(b) Find a basis for U and compute its dimension.

Solution: Let p(x) = ax3 + bx2 + cx + d. Then
∫ 1

0
p(x) dx = a

4
+

b
3
+ c

2
+ d and p(1) = a+ b+ c+ d. To be in U , p must satisfy

a

4
+

b

3
+

c

2
+ d = a+ b+ c+ d,

Consider the list of polynomials

x3 − 9

8
x2, x2 − 4

3
c, 1.

The list is linearly independent since the polynomials are of different
degrees. All of the polynomials are in U . We claim that they form a
basis for U . Since U is a subspace of P3(R), its dimension is at most
4. But x3 ̸∈ U , so U is not the whole P3(R). So dimU ≤ 3, but we
have already found a list of three linearly independent vectors in U ,
so dimU = 3 and the list above is a basis.
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2. Let V,W be vector spaces and T : V → W a linear map. Prove that if

v⃗1, v⃗2, . . . , v⃗n

is linearly dependent, then

T v⃗1, T v⃗2, . . . , T v⃗n

is linearly dependent.

Solution: Since v⃗1, v⃗2, . . . , v⃗n is LD, we have c1, . . . , cn ∈ F not all zero
such that

c1v⃗1 + c2v⃗2 + . . .+ cnv⃗n = 0⃗.

Apply T to both sides of the equation, we get the following equality in
W :

T (c1v⃗1 + c2v⃗2 + . . .+ cnv⃗n) = 0⃗.

Since T is linear, we can rewrite the left-hand side as

c1T (v⃗1) + c2T (v⃗2) + . . .+ cnT (v⃗n) = 0⃗,

and since not all ci are zero, this implies that

T v⃗1, T v⃗2, . . . , T v⃗n

is linearly dependent.
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3. Let T ∈ L(R2) be given by reflection across the line y = 2x. Find all
eigenvalues and eigenvectors of T .

Solution: Observe that a vector on the line is sent to itself by a reflec-
tion, and a vector orthogonal to the line is sent to its negative. So the
eigenvalues are 1 and −1, and the eigenvectors are

{(x, 2x) ∈ R2 | x ̸= 0}

for 1. Notice that (2,−1) · (1, 2) = 0, so the orthogonal complement of
the line is spanned by (2,−1). Therefore

{(2x,−x) ∈ R2 | x ̸= 0}

are the eigenvectors for the eigenvalue −1.
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4. Let T : P2(R) → P4(R) be the linear transformation given by

T (p) = x2p.

Compute the matrix of T with respect to the bases (1, x + 1, x2 + x + 1) of
P2(R) and (1, x, x2, x3, x4) of P4(R).

Solution: We compute

T (1) = 1(x2)

T (x+ 1) = 1(x3) + 1(x2)

T (x2 + x+ 1) = 1(x4) + 1(x3) + 1(x2)

So the matrix is 
0 0 0
0 0 0
1 1 1
0 1 1
0 0 1
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5. For each of the following parts, give a concrete example. For this question
only, you do not need to justify your answers.

(a) A nilpotent operator T ∈ L(V ) that has dim range(T ) = dimV − 1

Solution: Let V = C2 and T (x, y) = (y, 0).

(b) Two linear maps S, T such that ST = I but S is not invertible.

Solution: Let S : C2 → C and T : C → C2 be given by S(x, y) =
x, T (x) = (x, 0).

(c) An operator on V = C2 whose minimal polynomial is z − 1.

Solution: The identity IV .

(d) An inner product on R2 different from the usual dot product.

Solution: Let ⟨(x, y), (z, w)⟩ = xz + 2yw.

(e) A nonzero vector in P2(R) orthogonal to p(x) = x under the inner

product ⟨p, q⟩ =
∫ 1

0
pq.

Solution: Let q(x) = −3
2
x+ 1.
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6. Let V = P1(R), and, for p ∈ V , define φ1, φ2 ∈ V ′ by

φ1(p) =

∫ 1

0

p(x) dx, and φ2(p) =

∫ 2

0

p(x) dx.

Prove that (φ1, φ2) is a basis for V ′ and find a basis for V for which it is the
dual basis.

Solution: First note that φ2(x− 1) = 0 and φ(1)(x− 1) =
∫ 1

0
x− 1 dx =

−1
2
. Also, φ1(2x − 1) = 0 and φ2(2x − 1) =

∫ 2

0
2x − 1 dx = 2. This

computation shows that neither φ1, φ2 is zero, and also they are not scalar
multiples of each other. Therefore they are linearly independent. Since
dimV = 2, we also have dimV ′ = 2, and any linearly independent set of
size 2 is a basis, therefore φ1, φ2 is a basis.

To find the dual basis, note that we already found that x − 1 ∈ nullφ2

and 2x− 1 ∈ nullφ1. So if we take

−2x+ 2,
2x− 1

2

as our list, then we have

φ1(−2x+ 2) = 1

φ2(−2x+ 2) = 0

φ1

(
x− 1

2

)
= 0

φ2

(
x− 1

2

)
= 1

so the list is the basis for which φ1, φ2 is the dual basis.
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7. Suppose that v⃗1, v⃗2, v⃗3 is a basis for an inner product space V over R and
that

⟨v⃗1, v⃗1⟩ = 1

⟨v⃗2, v⃗2⟩ = 2

⟨v⃗3, v⃗3⟩ = 2

⟨v⃗1, v⃗2⟩ = −1

⟨v⃗1, v⃗3⟩ = −1

⟨v⃗2, v⃗3⟩ = 1

Find an orthonormal basis for V . Justify your answer.

Solution: We use the Gram-Schmidt procedure. Let f⃗1 = v⃗1. Then we
let

f⃗2 = v⃗2 −
⟨v⃗2, f⃗1⟩
⟨f⃗1, f⃗1⟩

f⃗1

= v⃗2 + f⃗1

= v⃗1 + v⃗2

f⃗3 = v⃗3 −
⟨v⃗3, f⃗1⟩
⟨f⃗1, f⃗1⟩

f⃗1 −
⟨v⃗3, f⃗2⟩
⟨f⃗2, f⃗2⟩

f⃗2

= v⃗3 −
⟨v⃗3, v⃗1⟩
⟨v⃗1, v⃗1⟩

v⃗1 −
⟨v⃗3, v⃗1 + v⃗2⟩

⟨v⃗1 + v⃗2, v⃗1 + v⃗2⟩
(v⃗1 + v⃗2)

= v⃗3 + (1)v⃗1 + (0)(v⃗1 + v⃗2).

It remains to scale each f⃗1, f⃗2, f⃗3 to unit length.

e⃗1 =
f⃗1

⟨f⃗1, f⃗1⟩
= f⃗1 = v⃗1

e⃗2 =
f⃗2

⟨f⃗2, f⃗2⟩
= f⃗2 = v⃗1 + v⃗2

e⃗3 =
f⃗3

⟨f⃗3, f⃗3⟩
= f⃗3 = v⃗1 + v⃗3

So an orthonormal basis is

v⃗1, v⃗1 + v⃗2, v⃗1 + v⃗3.
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8. Suppose V and W are finite-dimensional and that U is a subspace of V .
Prove that there exists T ∈ L(V,W ) such that null(T ) = U if and only if
dimU ≥ dimV − dimW .

Solution: Assume that there exists T ∈ L(V,W ) such that null(T ) = U .
Then by the FTLM,

dimnull(T ) + dim range(T ) = dimV

dimU = dimV − dim range(T )

dimU ≥ dimV − dimW

For the converse, assume that U is a subspace of V and dimU ≥ dimV −
dimW . Pick a basis v⃗1, . . . , v⃗k for U and extend to a basis v⃗1 . . . , v⃗k, v⃗k+1, . . . , v⃗n
of V . Note that the assumption on dimensions implies that k ≥ n+k−m,
or, equivalently, that n ≤ m. Pick a basis w⃗1, . . . , w⃗m of W . Define

T (v⃗i) =

{
0⃗ if i = 1, . . . , k

w⃗i−k if i = k + 1, . . . , n

Since n ≤ m, this map is well-defined, and by the linear map lemma it de-
fines a linear map T : V → W . Now note that range(T ) = Span(w⃗1, . . . w⃗n),
so dim range(T ) = n, so dimnull(T ) = dimV−dim range(T ) = n+k−n =
k. By the definition above, we have U ⊆ null(T ), and therefore we have
null(T ) = U as required.
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9. Suppose that V is finite-dimensional inner product space and U is a subspace
of V . Show that

PU⊥ = IV − PU ,

where IV is the identity map on V and PW denotes the orthogonal projection
map onto a subspace W ⊆ V .

Solution: Let v⃗1, . . . , v⃗k be an orthonormal basis for U and extend it to
an orthonormal basis v⃗1, . . . , vk, vk+1, . . . v⃗n of V . Then since ⟨v⃗j, v⃗i⟩ = δji ,
the list v⃗k+1, . . . , v⃗n is an orthonormal basis for U⊥, since it a is linearly
independent list of dimV −dimU vectors in U⊥. Recall that for all v⃗ ∈ V ,
we can uniquely write

c1v⃗1 + . . .+ ckv⃗k + ck+1v⃗k+1 + . . .+ cnv⃗n

and by the definition of orthogonal projections, we have

PU(v⃗) = c1v⃗1 + . . .+ ckv⃗k

PU⊥(v⃗) = ck+1v⃗k+1 + . . .+ cnv⃗n

IV (v⃗) = c1v⃗1 + . . .+ ckv⃗k + ck+1v⃗k+1 + . . .+ cnv⃗n

for all v⃗ ∈ V , and therefore PU + PU⊥ = IV , or equivalently,

PU⊥ = IV − PU .
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10. Two linear operators S, T ∈ L(V ) are said to be simultaneously diago-
nalizable if there exists a basis (v⃗1, . . . , v⃗n) of V such that the matrices
M(S, (v⃗1, . . . , v⃗n)) and M(T, (v⃗1, . . . , v⃗n)) of S and T with respect to this
basis are both diagonal. Prove that if S and T are simultaneously diagonal-
izable, then they commute, i.e.

ST = TS

Solution: Let λi be the eigenvalue corresponding for v⃗i for S and let µi

be the eigenvalue corresponding to v⃗i for T . Then we have

ST (v⃗i) = S(µiv⃗i) = µi(Sv⃗i) = µiλiv⃗i = λiµiv⃗i = λiS(v⃗i) = TS(v⃗i).

Since v⃗1, . . . , v⃗n form a basis, and ST (v⃗i) = TS(v⃗i), by the linear map
lemma, we have that ST = TS.
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11. Suppose that T ∈ L(C3) is an operator such that the minimal polynomial of
T is

z3 + 2z2 + z.

Find all the possibilities for the matrix of M(T ) with respect to a Jordan
basis (up to reordering the basis).

Solution: The minimal polynomial factors as z(z+1)2. So the eigenval-
ues of T are 0 and −1. Since the (z + 1) factors occurs with multiplicity
2, we must have a Jordan block of size 2 corresponding to the eigenvalue
−1, and therefore dimG(−1, T ) ≥ 2. Since 0 is an eigenvalue, we have
dimG(0, T ) ≥ 1. Since 1 + 2 = 3 = dimC3, these inequalities must be in
fact equalities, and then the matrix of T with respect to a Jordan basis
must look like −1 1 0

0 −1 0
0 0 0


(up to reordering the basis).
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12. Suppose V = Fn and T ∈ L(V ) is given by

T (x1, . . . , xn) = (x1, 2x2, 3x3, . . . , nxn).

Find the minimal polynomial of T . Justify your answer.

Solution: Let e⃗i denote the standard basis vector with a 1 in position i
and 0 everywhere else. Then note that

T (e⃗i) = ie⃗i

for all i. Therefore 1, 2, . . . , n are eigenvalues of T with corresponding
eigenvectors e⃗1, . . . , e⃗n. So for i = 1, . . . , n, we have that (z− i) is a factor
of the minimal polynomial. Notice that

deg ((z − 1)(z − 2) · · · (z − n)) = n

which is dimV , which is the maximum degree of the minimal polynomial.
In addition, (z − 1)(z − 2) · · · (z − n) is monic, so in fact the minimal
polynomial of T must be

(z − 1)(z − 2) · · · (z − n)
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13. Suppose T ∈ L(V ) is nilpotent. Prove that det(I + T ) = 1.

Solution: Let α ∈ V
(dimV )
alt be a nonzero alternating dimV -linear form.

Pick a Jordan basis v⃗1, . . . , v⃗n for T . Then det(I + T ) is the scalar such
that

α((I + T )v⃗1, . . . , (I + T )v⃗n) = det(I + T )α(v⃗1, . . . , v⃗n).

Since v⃗1, . . . , v⃗n is a Jordan basis for T and T is nilpotent the only eigen-
value of T is zero, and therefore we have that

T (v⃗k) = v⃗k−1 or T (v⃗k) = 0⃗.

Then we have

α((I + T )v⃗1, (I + T )v⃗2, . . . , (I + T )v⃗n) = α(v⃗1, (I + T )v⃗2, . . . , (I + T )v⃗n).

As α is multilinear, we have that

α(v⃗1, . . . , v⃗k−1, (I + T )v⃗k, (I + T )v⃗k+1, . . . , (I + T )v⃗n) =

α(v⃗1, . . . , v⃗k−1, v⃗k, (I + T )v⃗k+1, . . . , (I + T )v⃗n)+

α(v⃗1, . . . , v⃗k−1, T v⃗k, (I + T )v⃗k+1, . . . , (I + T )v⃗n)

Since α is alternating and v⃗1, . . . v⃗k−1, T v⃗k is always linearly dependent,
we also have for any 1 ≤ k ≤ n,

α(v⃗1, . . . , v⃗k−1, (I + T )v⃗k, . . . , (I + T )v⃗n) =

= α(v⃗1, . . . v⃗k−1, v⃗k, . . . , (I + T )v⃗n).

so by induction,

α((I + T )v⃗1, . . . , (I + T )v⃗n) = α(v⃗1, v⃗2, . . . , v⃗n),

and therefore
det(I + T ) = 1.
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14. Suppose V is finite-dimensional and S ∈ L(V ). Define A ∈ L (L(V )) by

A(T ) = ST

for T ∈ L(V ).

(a) Prove that dimnull(A) = (dimV )(dimnull(S)).

Solution: We will show that null(A) ∼= L(V, null(S)). Given T ∈
L(V, null(S)), we have

null(A) = {T ∈ L(V ) | ST = 0}
= {T ∈ L(V ) | ST (v⃗) = 0⃗ for all v⃗ ∈ V }
= {T ∈ L(V ) | S(T (v⃗)) = 0⃗ for all v⃗ ∈ V }
= {T ∈ L(V ) | range(T ) ⊆ null(S)}
∼= L(V, null(S))

Therefore, we have dimA = L(V, null(S)) = (dim(V ))(dimnull(S))

(b) Prove that dim range(A) = (dimV )(dim range(S)).

Solution: By the fundamental theorem of linear maps, we have
dimnull(A)+dim range(A) = dim(L(L(V )) = (dimV )2. Also by the
fundamental theorem, dimnull(S) + dim range(S) = dimV . Com-
bining these two, we get

dim range(A) = (dimV )2 − dimnull(A)

= (dimV )2 − (dimV )(dimnull(S))

= (dimV )(dimV − dimnull(S))

= (dimV )(dim range(S))
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