
MATH223 Homework 4
(due Friday, Oct/18, 11:59pm)

1. (3 marks) If S ⊂ V is an arbitrary subset (not necessarily a subspace), and T : V → V is a
transformation (any function, not necessarily linear), we define the image of S under T to
be

T(S) = {T (⃗v) | v⃗ ∈ S} .

Consider the following figure:
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On it you see an original subset of R2 (in blue, named S) and the images of S under some
transformation (a different one for each of A, B, . . . ,G). For each of the images:

• Determine if the corresponding transformation can be linear or not.

• For the transformations that can be linear, find a matrix that could be the matrix of
the transformation with respect to the standard basis of R2.

• For the transformations that can not be linear, explain why they can not be.

2. Let d
dx denote differentiation, multx denote multiplication by x. We have seen that we can

consider these as linear operators on P(R).1 To clarify: a linear operator is a linear map
from a vector space to itself.

(a) (1 mark) If we restrict the domain of the linear map multx to the subspace Pm(R),
what is

range (multx) ?
1These two operators are the generators for the Weyl algebra, introduced by Herman Weyl to study the Heisen-

berg uncertainty principle in quantum mechanics.

https://en.wikipedia.org/wiki/Weyl_algebra


(b) (1 mark) Consider both multx and d
dx as linear maps from Pm(R) to P(R). Prove that

range
(

d

dx
multx

)
⊆ Pm(R),

so d
dx multx can be considered as an operator on Pm(R).

(c) (2 marks) Find a simpler expression for the linear operator

d

dx
multx−multx

d

dx
.

(Hint: If you consider this as an operator on Pm(R) then you may be able to use a
Lemma)

(d) (1 mark) Use your result above to simplify the expression(
d

dx

)3

multx−multx

(
d

dx

)3

− 2

(
d

dx

)2

.

(e) (1 mark) Find the matrix of d
dx multx (as an operator on Pm(R)) with respect to the

basis 1, x, x2, . . . , xm.

(f) (1 mark) Use parts (2c) and (2e) to find the matrix of multx d
dx (with respect to the

basis 1, x, x2, . . . , xm) without doing any more direct computation or matrix entries.

3. (2 marks, this is Exercise 11 in Axler 3A) Suppose V is finite-dimensional and T ∈ L(V).
Prove that T is a scalar multiple of the identity if and only if ST = TS for every S ∈ L(V).2

4. Recall the notion of direct sums of vector spaces (definition 1.41 in Axler 1C). Let U,V be
subspaces of some vector space, and let W be finite-dimensional vector space.

(a) (1 mark) Prove that if u⃗1 . . . u⃗m is a basis for U and v⃗1, . . . v⃗n is a basis for V , then

u⃗1, . . . , u⃗m, v⃗1, . . . , v⃗n

is a basis for U⊕ V .

(b) (1 mark) Given linear maps S : U → W, T : V → W, we define the direct sum of the
maps (S⊕ T) : (U⊕ V) → W as follows:

(S⊕ T)(u⃗+ v⃗) = S(u⃗) + T (⃗v).

Explain why the above rule uniquely determines the linear transformation (Hint:
your explanation should involve clarifying the roles of u⃗ and v⃗).

(c) (2 marks) Let w⃗1, . . . , w⃗d be a basis for W. Find the matrix of (S⊕ T) with respect to
the bases u⃗1, . . . , u⃗m, v⃗1, . . . , v⃗n and w⃗1, . . . , w⃗d. in terms of the matrices of S and T

(with respect to the bases u⃗1, . . . , u⃗m and v⃗1, . . . , v⃗n).

2This is a special case of Schur’s Lemma, an important result in representation theory.

https://en.wikipedia.org/wiki/Schur%27s_lemma


(d) (1 mark) Given linear maps Q : W → U and R : W → V , we define the direct sum of

the maps

Q

⊕
R

 : W → (U⊕ V) as follows:

Q

⊕
R

 (w⃗) = Q(w⃗) + R(w⃗).

Find the matrix of

Q

⊕
R

 with respect to the bases w⃗1, . . . , w⃗d and u⃗1, . . . , u⃗m, v⃗1, . . . , v⃗n.2

(e) (1 mark) Find the null space of

Q

⊕
R

 in terms of null(Q) and null(R).

5. (2 marks, this is Exercise 5 in Axler 3C) Suppose V and W are finite-dimensional and
T ∈ L(V ,W). Prove that there exist a basis of V and a basis of W such that with respect to
these bases, all entries of M(T) are 0 except that the entries in row k, column k equal 1 if
1 ≤ k ≤ dim range T .


