MATH223 Homework 8 (due Friday, Dec/6, 11:59pm)

- 1. (2 marks) Let $A \in \mathbb{R}^{m,n}$ be an $m \times n$ matrix with entries in **R**. We define the following:
	- The **column space** Col(A) of A is the span of the columns of A (it is a subspace of **R**m,¹).
	- The **row space** $Row(A)$ of A is the span of the rows of A (it is a subspace of $\mathbb{R}^{1,n}$).
	- The **null space** $null(A)$ of A is $\{X \in \mathbb{R}^{n,1} \mid AX = 0_{\mathbb{R}^{m,1}}\}$.

Show that

$$
\left(Row(A)^{\perp}\right)^t = null(A)
$$

and

$$
Col(A)^{\perp} = null(A^t)
$$

where \perp is considered with respect to the dot product and M^t denotes the transpose of the matrix M.

2. (3 marks) This exercise describes a practical way to compute the matrix of a projection onto a subspace. Let $V = \mathbb{R}^{n}$ be the vector space of column vectors with n components equipped with the standard dot product, and let $U \subseteq V$ be a subspace. Choose a basis $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m$ of U and let

$$
A=(u_1u_2\ldots u_m)
$$

be the $n \times m$ matrix whose columns are the u_j -s. Let $\vec{y} \in V$. Prove that $\exists \vec{x} \in \mathbb{R}^{m,1}$ such that

$$
A^t A \vec{x} = A^t \vec{y}
$$

and moreover, for any such \vec{x} , we have

 $A\vec{x} = P_{U}\vec{y}$,

where P_U is the orthogonal projection onto U.

3. (2 marks) Let $V = C[-1, 1]$ be the vector space of continuous real-valued functions defined on the interval $[-1,1]$ with inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)$ dt. Let W_e and W_o denote the subspaces of even and odd functions respectively. Prove that

$$
W_e=W_0^\perp.
$$

(**Hint:** We have proved in class that if V is finite-dimensional inner product space, and U is a subspace then $V = U \oplus U^{\perp}$. Since $V = C[-1, 1]$ is infinite-dimensional, we could not use this theorem. However, it is true that $C[-1, 1] = W_e \oplus W_e^{\perp}$ and $C[-1, 1] = W_o \oplus W_o^{\perp}$. This should help you in answering this question. Before you jump to conclusions, note that if $V = U \oplus W$ and $V = U \oplus W$, we can not in general conclude that $W = W$.)

4. (2 marks, this is Exercise 6 in Axler 6C) Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$.

$$
T=TP_{(null\,T)^{\perp}}=P_{range\,T}T.
$$

5. (2 marks) Let M ∈ $\mathbb{C}^{n,n}$ be an $n \times n$ matrix with complex entries. Let M^* denote the **conjugate transpose** of M, that is M[∗] is an n × n complex matrix whose entries are

$$
M_{(i,j)}^*=\overline{M_{(j,i)}}.
$$

Prove that

 $MM^* = I_{\mathbb{C}^n}$

if and only if the rows of M form an orthonormal basis for **C**n.

- 6. (2 marks, this is Exercise 17 in Axler 8A) Suppose $T \in \mathcal{L}(V)$ is nilpotent and m is a positive integer such that $T^m = 0$.
	- (a) Prove that I T is invertible and that $(I T)^{-1} = I + T + ... + T^{m-1}$.
	- (b) Explain how you would guess the formula above.
- 7. (2 marks, this is Exercise 3 in Axler 8B) Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible. Prove that T and S^{-1} TS have the same eigenvalues with the same multiplicities.
- 8. (2 marks, this is Exercise 9 in Axler 8B) Suppose $\mathbb{F} = \mathbb{C}$ and $\mathbb{T} \in \mathcal{L}(V)$. Prove that there exist $D, N \in \mathcal{L}(V)$ such that $T = D + N$, the operator D is diagonalizable, N is nilpotent, and $DN = ND$.
- 9. (3 marks, this is Exercise 14 in Axler 8C) Suppose $\mathbb{F} = \mathbb{C}$ and $\mathbb{T} \in \mathcal{L}(V)$. Prove that there does not exist a direct sum decomposition of V into two nonzero subspaces invariant under T if and only if the minimal polynomial of T is of the form $(z - \lambda)^{\dim V}$ for some $\lambda \in \mathbb{C}$.