MATH223 Homework 8 (due Friday, Dec/6, 11:59pm)

- 1. (2 marks) Let $A \in \mathbb{R}^{m,n}$ be an $m \times n$ matrix with entries in \mathbb{R} . We define the following:
 - The **column space** Col(A) of A is the span of the columns of A (it is a subspace of $\mathbb{R}^{m,1}$).
 - The **row space** Row(A) of A is the span of the rows of A (it is a subspace of $\mathbb{R}^{1,n}$).
 - The **null space** null(A) of A is $\{X \in \mathbb{R}^{n,1} \mid AX = 0_{\mathbb{R}^{m,1}}\}$.

Show that

$$\left(\operatorname{Row}(A)^{\perp}\right)^{t} = \operatorname{null}(A)$$

and

$$\operatorname{Col}(A)^{\perp} = \operatorname{null}(A^{t})$$

where $^{\perp}$ is considered with respect to the dot product and M^t denotes the transpose of the matrix M.

2. (3 marks) This exercise describes a practical way to compute the matrix of a projection onto a subspace. Let $V = \mathbb{R}^{n,1}$ be the vector space of column vectors with n components equipped with the standard dot product, and let $U \subseteq V$ be a subspace. Choose a basis $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m$ of U and let

$$\mathsf{A} = (\mathfrak{u}_1\mathfrak{u}_2\ldots\mathfrak{u}_\mathfrak{m})$$

be the $n\times m$ matrix whose columns are the $u_j\text{-s.}$ Let $\vec{y}\in V.$ Prove that $\exists \vec{x}\in \mathbb{R}^{m,1}$ such that

$$A^{t}A\vec{x} = A^{t}\vec{y}$$

and moreover, for any such \vec{x} , we have

 $A\vec{x} = P_{U}\vec{y},$

where P_{U} is the orthogonal projection onto U.

3. (2 marks) Let V = C[-1, 1] be the vector space of continuous real-valued functions defined on the interval [-1, 1] with inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Let W_e and W_o denote the subspaces of even and odd functions respectively. Prove that

$$W_e = W_o^{\perp}$$
.

(**Hint:** We have proved in class that if V is finite-dimensional inner product space, and U is a subspace then $V = U \oplus U^{\perp}$. Since V = C[-1, 1] is infinite-dimensional, we could not use this theorem. However, it is true that $C[-1, 1] = W_e \oplus W_e^{\perp}$ and $C[-1, 1] = W_o \oplus W_o^{\perp}$. This should help you in answering this question. Before you jump to conclusions, note that if $V = U \oplus W$ and $V = U \oplus \widetilde{W}$, we can not in general conclude that $W = \widetilde{W}$.)

4. (2 marks, this is Exercise 6 in Axler 6C) Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$.

$$\mathsf{T} = \mathsf{TP}_{(\operatorname{null}\mathsf{T})^{\perp}} = \mathsf{P}_{\operatorname{range}\mathsf{T}}\mathsf{T}.$$

5. (2 marks) Let $M \in \mathbb{C}^{n,n}$ be an $n \times n$ matrix with complex entries. Let M^* denote the **conjugate transpose** of M, that is M^* is an $n \times n$ complex matrix whose entries are

$$\mathsf{M}^*_{(\mathfrak{i},\mathfrak{j})}=\overline{\mathsf{M}_{(\mathfrak{j},\mathfrak{i})}}.$$

Prove that

 $MM^* = I_{\mathbb{C}^n}$

if and only if the rows of M form an orthonormal basis for \mathbb{C}^n .

- 6. (2 marks, this is Exercise 17 in Axler 8A) Suppose $T \in \mathcal{L}(V)$ is nilpotent and m is a positive integer such that $T^m = 0$.
 - (a) Prove that I T is invertible and that $(I T)^{-1} = I + T + \ldots + T^{m-1}$.
 - (b) Explain how you would guess the formula above.
- 7. (2 marks, this is Exercise 3 in Axler 8B) Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible. Prove that T and S⁻¹TS have the same eigenvalues with the same multiplicities.
- 8. (2 marks, this is Exercise 9 in Axler 8B) Suppose $\mathbb{F} = \mathbb{C}$ and $T \in \mathcal{L}(V)$. Prove that there exist $D, N \in \mathcal{L}(V)$ such that T = D + N, the operator D is diagonalizable, N is nilpotent, and DN = ND.
- (3 marks, this is Exercise 14 in Axler 8C) Suppose F = C and T ∈ L(V). Prove that there does not exist a direct sum decomposition of V into two nonzero subspaces invariant under T if and only if the minimal polynomial of T is of the form (z − λ)^{dim V} for some λ ∈ C.