Balázs Elek (joint with Anne Dranowski, Joel Kamnitzer, Tanny Libman and Calder Morton-Ferguson)

Cornell University, Department of Mathematics

September 24, 2020

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Crystals

Good bases

Let $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ be the Lie algebra of trace 0 matrices and $V = \mathbb{C}^n$. The standard basis vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ form a basis for V that has several favorable properties:

Each basis vector is an eigenvector for the action of the subalgebra h of diagonal matrices, i.e.

$$\operatorname{diag}(t_1,\ldots,t_n)\cdot\mathbf{v}_{\mathbf{k}}=t_k\mathbf{v}_{\mathbf{k}}$$

- The matrices $E_{i,j} = (e_{mn})$ s.t. $e_{mn} = \begin{cases} 1 & \text{if } (m,n) = (i,j) \\ 0 & \text{else} \end{cases}$ for $i \neq j$ "almost permute" these vectors, i.e. $E_{i,j} \cdot \mathbf{v_j} = \mathbf{v_i}$ and $E_{i,j} \cdot \mathbf{v_k} = \mathbf{0}$ for $k \neq j$.
- Solution We only need to use the matrices $F_i = E_{i+1,i}$ to reach any basis vector from **v**₁.

Crystals

Good bases

Thus we can encode the representation as a colored directed graph, for example, \mathfrak{sl}_3 acting on \mathbb{C}^3 could be represented like this:

$$\mathbf{v_1} \xrightarrow{F_1} \mathbf{v_2} \xrightarrow{F_2} \mathbf{v_3}$$

Our aim is to generalize this idea and we'd hope that the nice basis we found is compatible with things we want to do with \mathfrak{g} -representations, like tensor product decompositions and branching.

Crystals

Good bases

This works only as long as each weight space is one-dimensional. We already run into trouble with the adjoint representation of \mathfrak{sl}_3 , as ker F_1 , ker F_2 , im F_1 , im F_2 are all different subspaces of \mathfrak{h} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals

Good bases

Fortunately, thanks to Kashiwara [Kas91], there is a way of fixing this problem: by going first to the quantized universal enveloping algebra $U_q(\mathfrak{g})$ and then taking a limit as $q \rightarrow 0$ in a suitable sense. It turns out that in this setting, choosing a good basis is always possible. This object, the directed graph with vertices the basis elements and edges labeled by the action of the lowering operators is called a **crystal**. Since the representation theory of $U_q(\mathfrak{g})$ is very similar to that of $U(\mathfrak{g})$, we can use this combinatorial gadget to study representations.

Kashiwara crystals

Why do we like crystals? Because the rules for tensoring and branching are purely combinatorial. For $\mathfrak{g} = \mathfrak{sl}_2$ -crystals, tensor product decompositions are given by:

Crystals

Crystals of tableaux

We know that for an irreducible \mathfrak{sl}_n -representation V_{λ} of highest weight λ , dim(V_{λ}) = #SSYT(λ) with entries up to *n*. The crystal of the adjoint representation of \mathfrak{sl}_3 is

Figure: The crystal $B(\omega_1 + \omega_2)$ for A_2

Fully commutative elements of the Weyl group

Definition 1 (Stembridge [Ste96])

Let W be a Coxeter group. An element w is **fully commutative** if any reduced word for w can be obtained from any other by using only the Coxeter relations that involve commuting generators.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example 2

If $W = S_n$, then *w* is fully commutative if and only if it is 321-avoiding.

Fully commutative elements of the Weyl group

We will mainly be interested in fully commutative elements associated to minuscule representations. Recall that a fundamental weight ω_p is minuscule if W acts transitively on the set of weights appearing in the representation $V(\omega_p)$. Let P_p be the maximal parabolic subgroup associated to ω_p , then the (unique) minimal length representative w_0^P for $w_0 W_{P_p}$ in W/W_{P_p} is fully commutative.

Example 3

Let $\mathfrak{g} = \mathfrak{sl}_4$. All fundamental weights are minuscule, and $V(\omega_2) \cong \wedge^2 \mathbb{C}^4$. Then $w_0^P = s_2 s_1 s_3 s_2$, which is indeed fully commutative.

Heaps

Following Stembridge [Ste96], given a word $\mathbf{w} = r_1 r_2 \cdots r_k$ in W, we define the **heap** $H(\mathbf{w})$ of \mathbf{w} to be the pair consisting of:

- The poset on {1,..., k}, where we declare i ≤ j if i > j and the corresponding entry of the Cartan matrix a_{ij} ≠ 0 and we take transitive closure of this relation.
- The labeling function π that sends *i* to s_i .

One can visualize a heap as a configuration of beads on runners arranged according to the Dynkin diagram as in Figure 2, where are dropping the beads one by one, and bead *i* is dropped on runner r_{k-i+1} .

Figure: The heap of the element $s_2 s_1 s_3 s_2$ in type A_3

Minuscule combinatorics

If *w* is a fully commutative element and **w** is a reduced word for *w*, then the heap $H(\mathbf{w})$ is independent of **w**, so we'll refer to it as the heap H(w) of *w*.

Let ω_p be a minuscule fundamental weight, then the weights occurring in $V(\omega_p)$ are in bijection with W/W_{P_p} . In this case, all minimal length representatives for elements of W/W_{P_p} are fully commutative, moreover, they are all elements v of W such that

$$v \leq_I w_0^{P_p}$$

where \leq_l denotes the left weak order, i.e. $v \leq_l w$ if some terminal substring of a reduced word for *w* is a reduced word for *v*.

Heaps

Minuscule combinatorics

As an example, consider $V(\omega_2)$ for A_3 . Then $w_0^{P_2} = s_2 s_1 s_3 s_2$, and the poset W/W_{P_2} is as follows:

Note that the heaps of these elements correspond to **order ideals** in $H(w_0^{P_2})$.

Figure: The heaps corresponding to elements of W/W_{P_2}

<ロ> (四) (四) (三) (三) (三) (三)

Heaps

Crystals from heaps

We can use these observations to describe a model for crystals of minuscule representations $B(\omega_p)$, where the underlying set is the order ideals (which are heaps themselves) $J(H(w_0^{P_p}))$ of $H(w_0^{P_p})$ and the lowering operators have an easy description: to apply f_i to a heap ϕ , try to remove a bead from runner *j*. If this is not possible because another bead on a neighboring runner is blocking it, then $f_i(\phi) = 0$, otherwise, $f_i(\phi)$ is ϕ with the highest bead on runner i removed.

Figure: The crystal $B(\omega_2)$ using Young tableaux

Figure: The crystal $B(\omega_2)$ using $J(H(s_2s_1s_3s_2))$

Crystals from heaps

So far we only considered minuscule representations, but we can use the language of heaps to construct models of more general crystals in a type-independent way.

Theorem 4

Let ω_p be a minuscule fundamental weight. Consider the set of *k*-fold tensor products of order ideals of $H(w_0^{P_p})$. The subset

$$H(w_0^{P_p})_{\leq}^{\otimes k} = \left\{ \phi_1 \otimes \phi_2 \otimes \ldots \otimes \phi_k \mid \phi_j \in J(H(w_0^{P_p})), \phi_i \subseteq \phi_{i+1} \right\},$$

with lowering operators defined using the tensor product rule for crystals, is a model for the crystal $B(k\omega_p)$.

Reverse plane partitions

Definition 5

The set $RPP(H(w_0^{P_p}), k)$ of order-reversing maps from the poset $H(w_0^{P_p})$ to $\{0, \ldots, k\}$ (with the standard ordering) is called a **reverse plane partition** of shape $H(w_0^{P_p})$.

There is a bijection between elements of $H(w_0^{P_p}) \leq K$ and $RPP(H(w_0^{P_p}), k)$, for example

$$\begin{pmatrix} 1 \\ 1 & 2 \\ 3 \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heaps

Crystal structure on rpps

The lowering operator f_i acts on rpps by decreasing an entry on the *i*-th column. For example, for $RPP(H(s_2s_1s_3s_2), k)$ in type A_3 , we have (as long as the resulting array is an rpp)

$$f_{1}\begin{pmatrix}a\\b\\c\\d\end{pmatrix} = \begin{pmatrix}a\\b-1\\c\\d\end{pmatrix}$$

$$f_{2}\begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{cases}\begin{pmatrix}a-1\\b\\c\\d\end{pmatrix} & if a+d \le b+c\\d\\d\end{pmatrix}$$

$$f_{3}\begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{pmatrix}a\\c\\d\end{pmatrix} = \begin{pmatrix}a\\c\\d\end{pmatrix} & c-1\\d\end{pmatrix}$$

Crystal structure on rpps

To summarize our discussion up to this point, we have constructed a model for crystals of the form $B(k\omega_p)$ where ω_p is a minuscule fundamental weight using either *k*-fold tensor products of heaps, or as reverse plane partitions of shape $H(w_0^{P_p})$. We found that (at least in type A_3) the lowering operators have a nice description in terms of the rpps. The Preprojective algebra of a quiver

Let Q be an orientation of g's Dynkin diagram with vertex set I, and Q^* be the opposite orientation. Consider the doubled quiver $\overline{Q} = Q \cup Q^*$. Let $\mathbb{C}\overline{Q}$ be the path algebra of \overline{Q} . Consider the element

$$\rho = \sum_{\boldsymbol{e} \in \boldsymbol{E}(\overline{\boldsymbol{Q}})} \epsilon(\boldsymbol{e}) \boldsymbol{e}^* \boldsymbol{e}$$

where $\varepsilon(e) = 1$ if $e \in E(Q)$ and -1 if $e \in E(Q^*)$. The algebra $\Lambda(Q) = \mathbb{C}\overline{Q}/(\rho)$ is called the **preprojective algebra of** Q.

(日) (日) (日) (日) (日) (日) (日)

 Λ -Modules from heaps

Given a heap of the form $H(w_0^{P_p})$, we make the following construction:

- **()** Replace each element in the heap by \mathbb{C} .
- Seplace each covering relation in *H*(*w*₀^{*P*_p}) by the identity map 1 : C → C.
- Solution I -graded vector space L(ω_p) by letting L(ω_p)_j be the direct sum of the 1-dimensional spaces which are labeled by j ∈ I.
- Define a map from $L(\omega_p)_j$ to $L(\omega_p)_i$ by extending the above-defined maps linearly.

The resulting quiver representation $L(\omega_p)$ is a $\Lambda(Q)$ -module, and it is the projective cover of the simple quiver representation S(p) supported at vertex p. Λ -Modules from heaps

As an example, consider the heap $H(s_2s_1s_3s_2)$ for A_3 . Following the construction we get

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and we see that this is indeed a (projective) $\Lambda(Q)$ -module.

Digression: Dominant minuscule heaps

We can repeat the above steps with Weyl group elements other than $w_0^{P_p}$. We need *w* to be **dominant minuscule**, meaning that there is a weight λ and a reduced word $s_{i_1} \cdots s_{i_k}$ for *w* such that

$$m{s}_{i_j}m{s}_{i_{j+1}}\cdotsm{s}_{i_k}(\lambda)=\lambda-lpha_{i_k}-lpha_{i_{k-1}}-\ldots-lpha_{i_j}$$

(this is stronger than fully commutative). In this case, the set RPP(H(w), k) serves as the underlying set of the Demazure crystal $B_w(\lambda)$. The resulting quiver representation is still a $\Lambda(Q)$ -module. For simplicity, we'll continue to assume that $w = w_0^{P_p}$.

Preprojective algebra modules

A nilpotent endomorphism

The construction of the module $L(\omega_p)$ from the heap $H(w_0^P)$ reveals an additional piece of structure. Consider the following map on the elements of $H(w_0^P)$: send each bead to the bead on the same runner just below it, or, if a bead is the lowest bead on the runner, send it to 0. Extend this to a nilpotent endomorphism T of $L(\omega_p)$.

Preprojective algebra modules

Jordan types and rpps

Consider the space $L(k\omega_p) = \{M \subseteq L(\omega_p)^{\oplus k}\}$ of $\Lambda(Q)$ -submodules. $L(k\omega_p)$ has connected components indexed by possible dimension vectors of M. We'll also denote the nilpotent endomorphism $T^{\oplus k}$ of $L(k\omega_p)$ by T. We can obtain a finer decomposition of $L(k\omega_p)$ by considering the Jordan type of T restricted to each M_i . This gives us a partition over each vertex, but there are also conditions between the Jordan types over neighboring vertices, and the Jordan type of T restricted to M is given by an rpp of shape $H(w_0^{P_p})$ with the sum of the entries in column *i* adding up to $\dim(M_i)$.

Preprojective algebra modules

Quiver variety components

Conjecture 6

The irreducible components of $L(k\omega_p)$ are indexed by reverse plane partitions.

For example, consider $L(2\omega_2)$ in type A_3 . Let M be a submodule with dimension vector (1, 2, 1). Write M_i for the subspace corresponding to the *i*-th node of the Dynkin diagram. To choose M_2 , we have to choose a 2-dimensional subspace of $\mathbb{C}^2 \oplus \mathbb{C}^2$ stable under the linear map

T(x, y, z, w) = (0, 0, x, y).

(日) (日) (日) (日) (日) (日) (日)

• If $M_2 = \ker T$, and we can choose M_1 and M_3 arbitrarily, this corresponds to the rpp

$$\begin{pmatrix} 0 \\ 1 & 1 \\ 2 \end{pmatrix}$$

2 If $M_2 \neq \ker T$, then M_1 and M_3 are determined, this corresponds to the rpp

$$\begin{pmatrix} & 1 & \\ 1 & & 1 \\ & 1 & \end{pmatrix}$$

(日) (日) (日) (日) (日) (日) (日)

Preprojective algebra modules

Quiver variety components

Conjecture 7

The lowering operator f_i on the rpps corresponds to taking a generic submodule with quotient the simple module S(i).

Consider the case $L(k\omega_2)$ in type A_3 . Let $\phi = \left(b \frac{a}{d}c\right)$ be an rpp, and let M be a module in the component indexed by ϕ . Note that in this case, this just means that $\dim(\ker T \cap M_2) = d$. For simplicity, we identify the subspaces $M_1 = B$ and $M_3 = C$ with their images in $M_2 = A + D$. Visually M looks like this:

Quiver variety components

We are looking for a submodule of *M* that fits into the SES

$$0 \rightarrow f_2(M) \rightarrow M \rightarrow S(2) \rightarrow 0$$

then we have to choose an a + d - 1-dimensional subspace of $M_2 = A + D$. To be a submodule of M, this subspace needs to contain B and C, and therefore B + C. Generically, this subspace will not contain all of D, unless B + C = D, in which case we are forced to contain all of D.

(日) (日) (日) (日) (日) (日) (日)

We claim that

$$\dim(\boldsymbol{B}+\boldsymbol{C})=\min(\boldsymbol{b}+\boldsymbol{c}-\boldsymbol{a},\boldsymbol{d}).$$

To get these upper bounds we use the rank-nullity theorem for the operators T^0 and T^1 restricted to M_2 .

• To see that $\dim(B+C) \le b+c-a$, note that

$$\dim(B+C) = \dim(B) + \dim(C) - \dim(B \cap C)$$
$$\leq b + c - a$$

2 To see that $\dim(B + C) \leq d$, note that

 $\dim(B+C) = \dim(T(B+C)) + \dim((B+C) \cap (\ker T))$ $\leq 0 + d$

(in general we get an upper bound from rank-nullity applied to each operator $T^0, T^1, \ldots, T^{m-1}$ where *m* is the number of beads on the runner in the heap $H(w_0^{P_p})$).

Quiver variety components

Therefore B + C = D if and only if $b + c - a \ge d$, or equivalently, if

 $a+d \leq b+c$.

and we see that this is the same rule as the lowering operator on the rpps (16).

In general, to compute $f_i(M)$, we need to know which subspaces of the form $M_i \cap \ker T^j$ must be contained in a generic submodule with quotient S(i). This coincides with the upper bound coming from the rank-nullity theorem applied to T^j being attained, and we want the largest j for which this happens. Then $f_i(M)$ will contain $M_i \cap \ker T^j$ but not $M_i \cap \ker T^{j+1}$, so we know the Jordan type of T restricted to $f_i(M)$. References

[Kas91] M. Kashiwara.

On crystal bases of the *Q*-analogue of universal enveloping algebras.

Duke Math. J., 63(2):465–516, 1991.

[Ste96] John R. Stembridge. On the fully commutative elements of Coxeter groups. *J. Algebraic Combin.*, 5(4):353–385, 1996.

(日) (日) (日) (日) (日) (日) (日)