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Crystals

Good bases

Let g = sln(C) be the Lie algebra of trace 0 matrices and
V = Cn. The standard basis vectors v1, . . . ,vn form a basis for
V that has several favorable properties:

1 Each basis vector is an eigenvector for the action of the
subalgebra h of diagonal matrices, i.e.

diag(t1, . . . , tn) · vk = tkvk

2 The matrices Ei ,j = (emn) s.t. emn =

{
1 if (m,n) = (i , j)
0 else

for i 6= j “almost permute” these vectors, i.e. Ei ,j · vj = vi
and Ei ,j · vk = 0 for k 6= j .

3 We only need to use the matrices Fi = Ei+1,i to reach any
basis vector from v1.
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Crystals

Good bases

Thus we can encode the representation as a colored directed
graph, for example, sl3 acting on C3 could be represented like
this:

v1
F1→ v2

F2→ v3

Our aim is to generalize this idea and we’d hope that the nice
basis we found is compatible with things we want to do with
g-representations, like tensor product decompositions and
branching.



Heaps, Crystals and Preprojective algebra modules

Crystals

Good bases

This works only as long as each weight space is
one-dimensional. We already run into trouble with the adjoint
representation of sl3, as kerF1, kerF2, imF1, imF2 are all
different subspaces of h.
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Crystals

Good bases

Fortunately, thanks to Kashiwara [Kas91], there is a way of
fixing this problem: by going first to the quantized universal
enveloping algebra Uq(g) and then taking a limit as q → 0 in a
suitable sense. It turns out that in this setting, choosing a good
basis is always possible. This object, the directed graph with
vertices the basis elements and edges labeled by the action of
the lowering operators is called a crystal. Since the
representation theory of Uq(g) is very similar to that of U(g), we
can use this combinatorial gadget to study representations.
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Crystals

Kashiwara crystals

Why do we like crystals? Because the rules for tensoring and
branching are purely combinatorial. For g = sl2-crystals, tensor
product decompositions are given by:
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Crystals

Crystals of tableaux

We know that for an irreducible sln-representation Vλ of highest
weight λ, dim(Vλ) = #SSYT (λ) with entries up to n. The crystal
of the adjoint representation of sl3 is

Figure: The crystal B(ω1 +ω2) for A2
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Heaps

Fully commutative elements of the Weyl group

Definition 1 (Stembridge [Ste96])

Let W be a Coxeter group. An element w is fully commutative
if any reduced word for w can be obtained from any other by
using only the Coxeter relations that involve commuting
generators.

Example 2
If W = Sn, then w is fully commutative if and only if it is
321-avoiding.



Heaps, Crystals and Preprojective algebra modules

Heaps

Fully commutative elements of the Weyl group

We will mainly be interested in fully commutative elements
associated to minuscule representations. Recall that a
fundamental weight ωp is minuscule if W acts transitively on
the set of weights appearing in the representation V (ωp). Let
Pp be the maximal parabolic subgroup associated to ωp, then
the (unique) minimal length representative wP

0 for w0WPp in
W/WPp is fully commutative.

Example 3
Let g = sl4. All fundamental weights are minuscule, and
V (ω2) ∼= ∧2C4. Then wP

0 = s2s1s3s2, which is indeed fully
commutative.
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Heaps

Heaps

Following Stembridge [Ste96], given a word
w = r1r2 · · · rk in W , we define the heap
H(w) of w to be the pair consisting of:

1 The poset on {1, . . . , k }, where we
declare i � j if i > j and the
corresponding entry of the Cartan
matrix aij 6= 0 and we take transitive
closure of this relation.

2 The labeling function π that sends i to
si .

One can visualize a heap as a configuration
of beads on runners arranged according to
the Dynkin diagram as in Figure 2, where
are dropping the beads one by one, and
bead i is dropped on runner rk−i+1.

Figure: The heap of
the element
s2s1s3s2 in type A3
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Heaps

Minuscule combinatorics

If w is a fully commutative element and w is a reduced word for
w , then the heap H(w) is independent of w, so we’ll refer to it
as the heap H(w) of w .
Let ωp be a minuscule fundamental weight, then the weights
occurring in V (ωp) are in bijection with W/WPp . In this case, all
minimal length representatives for elements of W/WPp are fully
commutative, moreover, they are all elements v of W such that

v ≤l wPp
0

where ≤l denotes the left weak order, i.e. v ≤l w if some
terminal substring of a reduced word for w is a reduced word
for v .
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Heaps

Minuscule combinatorics

As an example, consider V (ω2) for
A3. Then wP2

0 = s2s1s3s2, and the
poset W/WP2 is as follows:

s2s1s3s2

s2·

s1s3s2

s1· s3·

s3s2

s3·

s1s2

s1·

s2

s2·

e

Note that the heaps of these elements
correspond to order ideals in H(wP2

0 ).

Figure: The heaps
corresponding to
elements of W/WP2
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Heaps

Crystals from heaps

We can use these observations
to describe a model for crystals
of minuscule representations
B(ωp), where the underlying
set is the order ideals (which
are heaps themselves)
J(H(wPp

0 )) of H(wPp
0 ) and the

lowering operators have an
easy description: to apply fj to
a heap φ, try to remove a bead
from runner j . If this is not
possible because another bead
on a neighboring runner is
blocking it, then fj(φ) = 0,
otherwise, fj(φ) is φ with the
highest bead on runner j
removed.

Figure: The
crystal B(ω2)
using Young
tableaux

Figure: The
crystal B(ω2)
using
J(H(s2s1s3s2))
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Heaps

Crystals from heaps

So far we only considered minuscule representations, but we
can use the language of heaps to construct models of more
general crystals in a type-independent way.

Theorem 4
Let ωp be a minuscule fundamental weight. Consider the set of
k-fold tensor products of order ideals of H(wPp

0 ). The subset

H(wPp
0 )⊗k
≤ =

{
φ1 ⊗ φ2 ⊗ . . .⊗ φk

∣∣∣ φj ∈ J(H(wPp
0 )), φi ⊆ φi+1

}
,

with lowering operators defined using the tensor product rule
for crystals, is a model for the crystal B(kωp).
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Heaps

Reverse plane partitions

Definition 5

The set RPP(H(wPp
0 ), k) of order-reversing maps from the

poset H(wPp
0 ) to {0, . . . k } (with the standard ordering) is called

a reverse plane partition of shape H(wPp
0 ).

There is a bijection between elements of H(wPp
0 )⊗k
≤ and

RPP(H(wPp
0 ), k), for example

corresponds to the rpp  1
1 2

3
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Crystal structure on rpps

The lowering operator fi acts on rpps by decreasing an entry on
the i-th column. For example, for RPP(H(s2s1s3s2), k) in type
A3, we have (as long as the resulting array is an rpp)

f1

 a
b c

d

 =

 a
b − 1 c

d



f2

 a
b c

d

 =



 a − 1
b c

d

 if a + d ≤ b + c

 a
b c

d − 1

 if a + d > b + c

f3

 a
b c

d

 =

 a
b c − 1

d
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Heaps

Crystal structure on rpps

To summarize our discussion up to this point, we have
constructed a model for crystals of the form B(kωp) where ωp
is a minuscule fundamental weight using either k -fold tensor
products of heaps, or as reverse plane partitions of shape
H(wPp

0 ). We found that (at least in type A3) the lowering
operators have a nice description in terms of the rpps.
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Preprojective algebra modules

The Preprojective algebra of a quiver

Let Q be an orientation of g’s Dynkin diagram with vertex set I,
and Q∗ be the opposite orientation. Consider the doubled
quiver Q = Q ∪Q∗. Let CQ be the path algebra of Q. Consider
the element

ρ =
∑

e∈E(Q)

ε(e)e∗e

where ε(e) = 1 if e ∈ E(Q) and −1 if e ∈ E(Q∗). The algebra
Λ(Q) = CQ/(ρ) is called the preprojective algebra of Q.
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Preprojective algebra modules

Λ-Modules from heaps

Given a heap of the form H(wPp
0 ), we make the following

construction:
1 Replace each element in the heap by C.
2 Replace each covering relation in H(wPp

0 ) by the identity
map 1 : C→ C.

3 Define an I-graded vector space L(ωp) by letting L(ωp)j be
the direct sum of the 1-dimensional spaces which are
labeled by j ∈ I.

4 Define a map from L(ωp)j to L(ωp)i by extending the
above-defined maps linearly.

The resulting quiver representation L(ωp) is a Λ(Q)-module,
and it is the projective cover of the simple quiver representation
S(p) supported at vertex p.
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Preprojective algebra modules

Λ-Modules from heaps

As an example, consider the heap H(s2s1s3s2) for A3.
Following the construction we get

1 2 3

C

C C

C

C

C C

C

and we see that this is indeed a (projective) Λ(Q)-module.
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Preprojective algebra modules

Digression: Dominant minuscule heaps

We can repeat the above steps with Weyl group elements other
than wPp

0 . We need w to be dominant minuscule, meaning
that there is a weight λ and a reduced word si1 · · · sik for w such
that

sij sij+1 · · · sik (λ) = λ− αik − αik−1 − . . .− αij

(this is stronger than fully commutative). In this case, the set
RPP(H(w), k) serves as the underlying set of the Demazure
crystal Bw (λ). The resulting quiver representation is still a
Λ(Q)-module. For simplicity, we’ll continue to assume that
w = wPp

0 .
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Preprojective algebra modules

A nilpotent endomorphism

The construction of the module L(ωp) from the heap H(wP
0 )

reveals an additional piece of structure. Consider the following
map on the elements of H(wP

0 ): send each bead to the bead on
the same runner just below it, or, if a bead is the lowest bead on
the runner, send it to 0. Extend this to a nilpotent
endomorphism T of L(ωp).

1 2 3

C

C C

C
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Preprojective algebra modules

Jordan types and rpps

Consider the space L(kωp) = {M ⊆ L(ωp)
⊕k } of

Λ(Q)-submodules. L(kωp) has connected components
indexed by possible dimension vectors of M. We’ll also denote
the nilpotent endomorphism T⊕k of L(kωp) by T .
We can obtain a finer decomposition of L(kωp) by considering
the Jordan type of T restricted to each Mi . This gives us a
partition over each vertex, but there are also conditions
between the Jordan types over neighboring vertices, and the
Jordan type of T restricted to M is given by an rpp of shape
H(wPp

0 ) with the sum of the entries in column i adding up to
dim(Mi).
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Preprojective algebra modules

Quiver variety components

Conjecture 6

The irreducible components of L(kωp) are indexed by reverse
plane partitions.

For example, consider L(2ω2) in type A3. Let M be a
submodule with dimension vector (1,2,1). Write Mi for the
subspace corresponding to the i-th node of the Dynkin
diagram. To choose M2, we have to choose a 2-dimensional
subspace of C2 ⊕ C2 stable under the linear map

T (x , y , z,w) = (0,0, x , y).
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Preprojective algebra modules

Quiver variety components

1 If M2 = ker T , and we can choose M1 and M3 arbitrarily,
this corresponds to the rpp 0

1 1
2


2 If M2 6= ker T , then M1 and M3 are determined, this

corresponds to the rpp  1
1 1

1
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Preprojective algebra modules

Quiver variety components

Conjecture 7
The lowering operator fi on the rpps corresponds to taking a
generic submodule with quotient the simple module S(i).

Consider the case L(kω2) in type A3. Let φ =
( a

b c
d

)
be an

rpp, and let M be a module in the component indexed by φ.
Note that in this case, this just means that dim(ker T ∩M2) = d .
For simplicity, we identify the subspaces M1 = B and M3 = C
with their images in M2 = A + D. Visually M looks like this:

A

�� ��
B

��

C

��
D
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Preprojective algebra modules

Quiver variety components

We are looking for a submodule of M that fits into the SES

0→ f2(M)→ M → S(2)→ 0

then we have to choose an a + d − 1-dimensional subspace of
M2 = A + D. To be a submodule of M, this subspace needs to
contain B and C, and therefore B + C. Generically, this
subspace will not contain all of D, unless B + C = D, in which
case we are forced to contain all of D.
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Preprojective algebra modules

Quiver variety components

We claim that

dim(B + C) = min(b + c − a,d).

To get these upper bounds we use the rank-nullity theorem for
the operators T 0 and T 1 restricted to M2.

1 To see that dim(B + C) ≤ b + c − a, note that

dim(B + C) = dim(B) + dim(C) − dim(B ∩ C)

≤ b + c − a

2 To see that dim(B + C) ≤ d , note that

dim(B + C) = dim(T (B + C)) + dim((B + C) ∩ (ker T ))

≤ 0 + d

(in general we get an upper bound from rank-nullity applied to
each operator T 0,T 1, . . .T m−1 where m is the number of beads
on the runner in the heap H(wPp

0 )).
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Preprojective algebra modules

Quiver variety components

Therefore B + C = D if and only if b + c − a ≥ d , or
equivalently, if

a + d ≤ b + c.

and we see that this is the same rule as the lowering operator
on the rpps (16).
In general, to compute fi(M), we need to know which
subspaces of the form Mi ∩ ker T j must be contained in a
generic submodule with quotient S(i). This coincides with the
upper bound coming from the rank-nullity theorem applied to T j

being attained, and we want the largest j for which this
happens. Then fi(M) will contain Mi ∩ ker T j but not
Mi ∩ ker T j+1, so we know the Jordan type of T restricted to
fi(M).
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