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1 The cotangent bundle of the projective line

Everything is always over C. Recall P1 = {[z0 : z1]|z0, z1 ∈ C}. Let’s find a way to describe
T ∗P1 explicitly. We have

T[z0:z1]P
1 =

{[
w0

w1

]
∈ C2 :

[
w0

w1

]
·
[
z0
z1

]
= 0

}
(by the exact sequence 0→ L → P1 × C2 → TP1 → 0). Then

T ∗
[z0:z1]

P1 =
{
f : T[z0:z1]P

1 → C linear
}
.

Since

{[
w0

w1

]
·
[
z0
z1

]}
is a basis of C2, we can cook up a map A : C2 → C2 by defining

A

([
z0
z1

])
=

[
0
0

]
, A

([
w0

w1

])
= f

([
w0

w1

])[
z0
z1

]
.

Then the matrix A is nilpotent, so tr(A) = 0. So we can describe the cotangent bundle of P1

as
T ∗P1 =

{
(L,A) : L ∈ P1, A ∈M2×2(C), A(C2) ⊆ L,A nilpotent

}
.

Thinking about T ∗P1 this way gives us two natural maps

T ∗P1 µ //

π

��

N

P1

where µ(L,A) = A, π(L,A) = L, and N is the set of nilpotent matrices. The map π is just
bundle projection, to understand µ better, we need to do some

2 Symplectic geometry of cotangent bundles

Let M be a manifold and ω a 2-form on M (e.g. C2 with 〈z1, z2〉 = 1). We say (M,ω) is a
symplectic manifold if

1. ω is closed, i.e. dω = 0.
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2. ω is non-degenerate, i.e. the map ωm : TmM → T ∗
mM given by X 7→ ω(X,−) is an

isomorphism for all m ∈M .

Proposition 2.1. Let M be a manifold. Then T ∗M has a canonical symplectic form.

Proof. Let π : T ∗M → M be the bundle projection map and π∗ : T (T ∗M) → TM its
differential. Then at any point (m,α) ∈ T ∗M ,

π∗(m,α) : T(m,α)(T
∗M)→ TmM

is a linear map. Define λ ∈ Ω1(T ∗M) by (go through typecheck in the formula)

λ(m,α)(X) = α(π∗(m,α)X)).

Let ω = dλ. Exercise: check that ω is non-degenerate.

Q.E.D.

Example: Cn with basis q1, . . . qn, T ∗Cn with basis q1, . . . , qn, p1, . . . , pn, then

ω =

n∑
i=1

dpi ∧ dqi.

Sometimes when a Lie group G acts on M preserving a symplectic form, there is a moment
map

µ : M → CdimG.

µ is quite magical, for instance, if G is a torus T = (C×)k, then µ(M) is the convex hull of
MT (Atiyah, Guillemin-Sternberg).

3 The Springer resolution

Now we again focus on the map µ : T ∗P1 → N ⊂ C3. It was not an accident that we denoted
it µ, as it is in fact the moment map for the SL2(C)-action on P1. The set of nilpotent
matrices N in this case is

N =

{[
a b
c −a

]
: a2 + bc = 0

}
,

so it is a quadratic cone in C3 ∼= sl2(C). (Draw C-G picture somewhere where it
doesn’t have to be erased and explain it) From the picture, we see that µ is birational.
Note that N has a singular point at the origin, and as T ∗P1 is smooth, µ is a resolution of
singularities.

There is a completely analogous picture for any semisimple algebraic group G (e.g.
SLn(C)), P1 is replaced by the flag manifold G/B, and the moment map has its image
in the nilcone. The map

µ : T ∗(G/B)→ N

is called the Springer resolution.

Remark 3.1. Just the sheer number of important and well-studied things that are involved
with setting up µ, cotangent bundles, moment maps, resolutions of singularities make it
awesome. And if that wasn’t enough, applications of µ include a construction of all represen-
tations of finite reflection groups. The resolution µ is also semismall, so it is a place where
perverse sheaves work well.
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4 Symplectic singularities

Motivated by the awesomeness of the Springer resolution, one might want to find more
examples of this phenomenon.

Definition 4.1. A symplectic variety is a variety X such that the smooth locus of X has a
symplectic form ω (and technical conditions, X should be normal and ω should extend to any
resolution as a holomorphic 2-form).

Note that N is a symplectic variety, as its smooth locus is the orbit of a regular nilpotent
element (draw in Jordan form) under G, so it is an example of a coadjoint orbit (Ben’s talk
later). If one wants to get even closer to the nilcone, one defines

Definition 4.2. A conical symplectic variety is a symplectic variety X with a C×-action
contracting X to a point such that for t ∈ C×, t∗ω = tl · ω.

Maybe mention that there is also a lot of buzz about symplectic singularities
recently, somewhat coming from Physics.

5 Complete intersections

And now for something (seemingly) completely different. A variety Y ⊆ Pn is a complete
intersection if I(Y ) can be generated by n− dim(Y ) elements. A fun example to play with
is the twisted cubic curve

Y = [1 : t : t2 : t3] ⊂ P3.

Even though Y is the projective closure of

Y o = {(t, t2, t3} ⊂ C3,

and I(Y o) = 〈z21 − z2, z
3
1 − z3 is easily generated by 2 elements, if one naively tries to

homogenize the generators and lets

I(X) = 〈z21 − z2z0, z31 − z3z20〉,

then
X = Y t [0 : 0 : z2 : z3]

is a union of the twisted cubic curve and a line. Actually Y isn’t a complete intersection,
which one can prove by arguing that since deg(Y ) = 3 (whatever this means), by hyperplane
Bézout theorem the two generators would need to have degrees 1 and 3, but direct checking
shows that Y is too twisted to lie on a hyperplane. Note that as a set, Y is the intersection
of

V (〈z21 − z0z2〉) ∩ V (〈z22(z1z3 − z22)− z3(z0z3 − z1z2)〉)

but this intersection is really the twisted cubic twice. Anyway, the point is that this is some
very classical algebraic geometry property.

6 Namikawa’s theorem

Now the punchline:

Theorem 6.1. [1] Let X be a conical symplectic variety which is a complete intersection.
Then X is the nilcone of some semisimple algebraic group with the symplectic structure Ben
will talk about.
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The proof is by a lot of high powered algebraic geometry and contact structures.

Remark 6.2. This theorem is completely crazy. We start with a variety X with the following
properties:

1. It has a C×-action contracting it to a point,

2. It has a symplectic structure ω on the smooth locus that is a weight vector for the
C×-action,

3. It is a complete intersection.

And out of the blue, there is a G. This also leads us to Allen Knutson’s favorite definiton of
a Lie algebra

Definition 6.3. A semisimple complex Lie algebra is a conical symplectic variety which is
a complete intersection.
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