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1 The cotangent bundle of the projective line

Everything is always over C. Recall P! = {[2g : 21]|20, 21 € C}. Let’s find a way to describe
T*P! explicitly. We have

Ty P = { {w"} cc?. {w(’] . M - 0}
wy wi| |2

(by the exact sequence 0 — £ — P! x C? — TP! — 0). Then

Tipee) Pt = {f : Tizg:zy P! — C linear } .

Since { [go] . [ZO} } is a basis of C?, we can cook up a map A : C* — C? by defining

B DD

Then the matrix A is nilpotent, so tr(A) = 0. So we can describe the cotangent bundle of P!

as
TP = {(L,A):Le P! A € Myyo(C), A(C*)C L, A nilpotent } .

Thinking about T*P! this way gives us two natural maps
TP L N
]P>1
where u(L, A) = A, w(L, A) = L, and N is the set of nilpotent matrices. The map 7 is just
bundle projection, to understand u better, we need to do some
2  Symplectic geometry of cotangent bundles

Let M be a manifold and w a 2-form on M (e.g. C? with (21, 22) = 1). We say (M,w) is a
symplectic manifold if

1. wis closed, i.e. dw = 0.



2. w is non-degenerate, i.e. the map wy, : T, M — T M given by X — w(X,—) is an
isomorphism for all m € M.

Proposition 2.1. Let M be a manifold. Then T*M has a canonical symplectic form.

Proof. Let m : T*M — M be the bundle projection map and =, : T(T*M) — TM its
differential. Then at any point (m,a) € T*M,

ﬂ—*(m,a) : T(m7a) (T*M) — TmM
is a linear map. Define A € QI(T*M) by (go through typecheck in the formula)
)‘(m,a) (X) = a(ﬂ-*(m,a)X))

Let w = d\. Exercise: check that w is non-degenerate.

Q.E.D.

Example: C™ with basis q1, ... g, T"C™ with basis ¢1,...,qn,P1,- .-, Pn, then

w = zn:dpi A dg;.

i=1

Sometimes when a Lie group G acts on M preserving a symplectic form, there is a moment
map
E M — CdimG’

p is quite magical, for instance, if G is a torus 7' = (C*)¥, then u(M) is the convex hull of
M7 (Atiyah, Guillemin-Sternberg).

3 The Springer resolution

Now we again focus on the map u : T*P! — N C C3. It was not an accident that we denoted
it p, as it is in fact the moment map for the SLy(C)-action on P'. The set of nilpotent

matrices N in this case is
./\/'—{{a b]:az—i—bc—()},
c —a

~

so it is a quadratic cone in C3 2 sly(C). (Draw C-G picture somewhere where it
doesn’t have to be erased and explain it) From the picture, we see that p is birational.
Note that A has a singular point at the origin, and as T*P' is smooth, p is a resolution of
singularities.

There is a completely analogous picture for any semisimple algebraic group G (e.g.
SL,(C)), P! is replaced by the flag manifold /B, and the moment map has its image
in the nilcone. The map

pw:T(G/B) = N

is called the Springer resolution.

Remark 3.1. Just the sheer number of important and well-studied things that are involved
with setting up p, cotangent bundles, moment maps, resolutions of singularities make it
awesome. And if that wasn’t enough, applications of v include a construction of all represen-
tations of finite reflection groups. The resolution p is also semismall, so it is a place where
perverse sheaves work well.



4 Symplectic singularities

Motivated by the awesomeness of the Springer resolution, one might want to find more
examples of this phenomenon.

Definition 4.1. A symplectic variety is a variety X such that the smooth locus of X has a
symplectic form w (and technical conditions, X should be normal and w should extend to any
resolution as a holomorphic 2-form,).

Note that A is a symplectic variety, as its smooth locus is the orbit of a regular nilpotent
element (draw in Jordan form) under G, so it is an example of a coadjoint orbit (Ben’s talk
later). If one wants to get even closer to the nilcone, one defines

Definition 4.2. A conical symplectic variety is a symplectic variety X with a C*-action
contracting X to a point such that fort € C*, t*w =t' - w.

Maybe mention that there is also a lot of buzz about symplectic singularities
recently, somewhat coming from Physics.

5 Complete intersections

And now for something (seemingly) completely different. A variety Y C P" is a complete
intersection if I(Y') can be generated by n — dim(Y") elements. A fun example to play with
is the twisted cubic curve

Y =[1:t:t2:3] Cc P2

Even though Y is the projective closure of
YO ={(tt*t*} c C?,

and I(Y°) = (22 — 29,2} — 23 is easily generated by 2 elements, if one naively tries to
homogenize the generators and lets

I(X) = <Z% - 222072? - Z3Z§>,

then
X=YU[0:0: 2 : 23]

is a union of the twisted cubic curve and a line. Actually Y isn’t a complete intersection,
which one can prove by arguing that since deg(Y) = 3 (whatever this means), by hyperplane
Bézout theorem the two generators would need to have degrees 1 and 3, but direct checking
shows that Y is too twisted to lie on a hyperplane. Note that as a set, Y is the intersection
of

V(2 = 2022)) NV ((z5 (2123 — 23) — 23(2023 — 2122)))

but this intersection is really the twisted cubic twice. Anyway, the point is that this is some
very classical algebraic geometry property.

6 Namikawa’s theorem

Now the punchline:

Theorem 6.1. [/] Let X be a conical symplectic variety which is a complete intersection.
Then X is the nilcone of some semisimple algebraic group with the symplectic structure Ben
will talk about.



The proof is by a lot of high powered algebraic geometry and contact structures.

Remark 6.2. This theorem is completely crazy. We start with a variety X with the following
properties:

1. It has a C*-action contracting it to a point,

2. It has a symplectic structure w on the smooth locus that is a weight vector for the
C*-action,

3. It is a complete intersection.

And out of the blue, there is a G. This also leads us to Allen Knutson’s favorite definiton of
a Lie algebra

Definition 6.3. A semisimple complex Lie algebra is a conical symplectic variety which is
a complete intersection.
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