MATH 223 — Midterm 1 — 45 minutes

4th October 2024

- The test consists of 7 pages and 5 questions worth a total of 25 marks.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, phones, smart watches, etc.)
- No work on this page will be marked.
- Fill in the information below before turning to the questions.

Additional instructions

- Please use the spaces indicated.
- If you require extra paper then put up your hand and ask your instructor.
 - You must put your name and student number on any extra pages.
 - You must indicate the test-number and question-number.
 - Please do this **on both sides** of any extra pages.
- Please do not dismember your test. You must submit all pages.

Cheat sheet

These are the most important definitions that we encountered: (V is a vector space over a field \mathbb{F}).

• A list $\vec{v}_1, \dots, \vec{v}_m$ of vectors is **linearly independent** if

$$a_1\vec{v}_1 + \ldots + a_m\vec{v}_m = \vec{0}$$

has only the trivial solution $a_1 = \ldots = a_m = 0$.

• The **span** of a list $\vec{v}_1, \ldots, \vec{v}_m$ is the set

$$\{a_1\vec{v}_1 + \ldots + a_m\vec{v}_m \in V \mid a_i \in \mathbb{F}\}\$$

- A **basis** of a vector space is a linearly independent spanning list.
- The **dimension** of a vector space is the number of elements in a basis.

1. 5 marks Find all values of a, b such that the list

$$\begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} a\\b\\2 \end{pmatrix}$$

is linearly dependent.

Solution: The vectors are linearly dependent if and only if the vector equation

$$x \begin{pmatrix} 1\\2\\1 \end{pmatrix} + y \begin{pmatrix} 0\\-1\\1 \end{pmatrix} + z \begin{pmatrix} a\\b\\2 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

has a nontrivial solution. This happens if RREF of the matrix

$$\begin{pmatrix} 1 & 0 & a \\ 2 & -1 & b \\ 1 & 1 & 2 \end{pmatrix}$$

has fewer than three pivots. We row reduce

$$\begin{pmatrix} 1 & 0 & a \\ 2 & -1 & b \\ 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & a \\ 0 & -1 & b - 2a \\ 0 & 1 & 2 - a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 2a - b \\ 0 & 0 & 2 + b - 3a \end{pmatrix}$$

From here we see that the first two columns will always have pivots, and the third column has a pivot if and only if

 $2 + b - 3a \neq 0.$

Therefore the list is linearly dependent if and only if b = 3a - 2 (and a is arbitrary).

2. 4 marks Let V be a vector space over the field \mathbb{F} . Let $\lambda \in \mathbb{F}$ and $\vec{v} \in V$. Prove that if $\lambda \vec{v} = \vec{0}$ then either $\lambda = 0$ or $\vec{v} = 0$.

Solution: We proceed by cases. If $\lambda = 0$, then we are done, so we can assume $\lambda \neq 0$. Then λ has a multiplicative inverse $\frac{1}{\lambda}$. Multiplying both sides of the equation $\lambda \vec{v} = \vec{0}$

 $\frac{1}{\lambda}\lambda\vec{v} = \frac{1}{\lambda}\vec{0}$ $1\vec{v} = \vec{0}$ $\vec{v} = \vec{0}$

and we are done.

by $\frac{1}{\lambda}$ yields

- 3. 6 marks Recall that $\mathcal{P}_m(\mathbb{R})$ denotes the vector space of polynomials of degree at most m with real coefficients (we'll use x to denote the indeterminate).
 - (a) Prove that $U = \{p(x) \in \mathcal{P}_m(\mathbb{R}) \mid p(0) = 0\}$ is a subspace of $\mathcal{P}_m(\mathbb{R})$.

Solution: We check the three conditions for a subspace:

- 1. Since $\vec{0}(0) = 0$, we have $\vec{0} \in U$.
- 2. Suppose $p, q \in U$, i.e. p(0) = q(0). Then (p+q)(0) = p(0) + q(0) = 0, so $p + q \in U$.
- 3. Suppose $p \in U$ and $\lambda \in \mathbb{R}$. Then $(\lambda p)(0) = \lambda(p(0)) = \lambda(0) = 0$ so $\lambda p \in U$.
- (b) Find a basis for U.

Solution: We claim that the list x, x^2, \ldots, x^m is a basis for U.

- Since the list consists of polynomials of different degrees it is LI.
- To see that the list spans U, note that if $p(x) = a_0 + a_1 x + a_2 x^2 \dots + a_m x^m \in \mathcal{P}_m(\mathbb{R})$, then

$$(p(0) = 0) \Leftrightarrow (a_0 + a_1(0) + a_2(0)^2 + \ldots + a_m(0^m) = 0) \Leftrightarrow a_0 = \emptyset.$$

Which means that p has zero constant term, which is the same as being a linear combination of monomials of strictly positive degree, i.e. $p \in \text{Span}(x, x^2, \dots, x^m)$. 4. 5 marks Suppose U and W are both four-dimensional subspaces of \mathbb{C}^6 . Prove that there exist two vectors in $U \cap W$ such that neither of these vectors is a scalar multiple of the other.

Solution: We have

$$\dim(U \cap W) = \dim(U) + \dim(W) - \dim(U + W)$$
$$= 4 + 4 - \dim(U + W)$$
$$\geq 8 - \dim(\mathbb{C}^6) = 2.$$

Pick a basis for $U \cap W$, since $\dim(U \cap W) \ge 2$, it has at least two elements \vec{u}_1, \vec{u}_2 . Since a basis is linearly independent, in particular, the list (\vec{u}_1, \vec{u}_2) is LI, which implies that neither of the two vectors \vec{u}_1 and \vec{u}_2 is a scalar multiple of the other.

5. 5 marks Given $\vec{v}_1, \ldots, \vec{v}_m$ and \vec{w} , let $U = \text{Span}(\vec{v}_1, \ldots, \vec{v}_m)$ and $W = \text{Span}(\vec{v}_1, \ldots, \vec{v}_m, \vec{w})$. Prove that either dim $W = \dim U$ or dim $W = \dim U + 1$.

Solution: Since $(\vec{v}_1, \ldots, \vec{v}_m)$ is a spanning list for U, we can reduce it to a basis. Let this basis be $(\vec{u}_1, \ldots, \vec{u}_k)$ (where each \vec{u}_i is equal to some \vec{v}_j and $k = \dim U$). We know that

$$\operatorname{Span}(\vec{v}_1,\ldots,\vec{v}_m) = \operatorname{Span}(\vec{u}_1,\ldots,\vec{u}_k)$$

 \mathbf{so}

$$W = \operatorname{Span}(\vec{v}_1, \dots, \vec{v}_m, \vec{w}) = \operatorname{Span}(\vec{u}_1, \dots, \vec{u}_k, \vec{w}).$$

If the list $(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k, \vec{w})$ is LI, then it is a basis for W, and dim $W = k + 1 = \dim U + 1$. Otherwise, the list is LD. In this case, since it is a spanning list, we can reduce it to a basis. Note that $(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ is LI (since it is a basis for U), so the reduction has to remove \vec{w} from the end. Then $(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_k)$ is a basis for W and therefore dim $W = k = \dim U$.