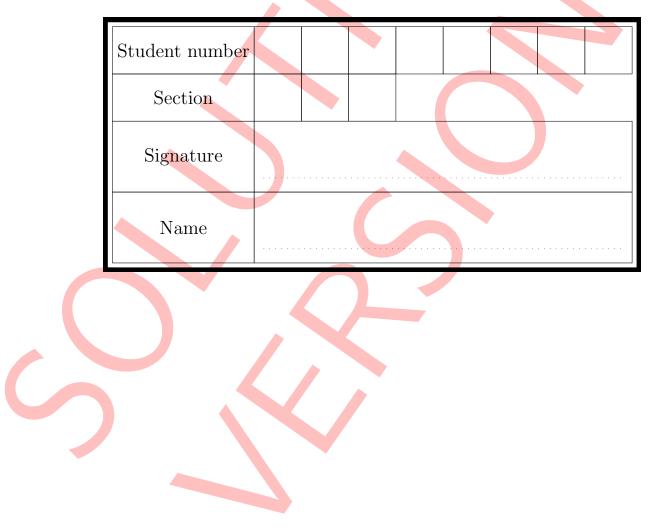
MATH 223 — Midterm 2 — 45 minutes

9th November 2024

- The test consists of 7 pages and 4 questions worth a total of 20 marks.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, phones, smart watches, etc.)
- No work on this page will be marked.
- Fill in the information below before turning to the questions.



Additional instructions

- Please use the spaces indicated.
- If you require extra paper then put up your hand and ask your instructor.
 - You must put your name and student number on any extra pages.
 - You must indicate the test-number and question-number.
 - Please do this **on both sides** of any extra pages.
- Please do not dismember your test. You must submit all pages.

Cheat sheet

These are the most important definitions that we encountered:

• For $T \in \mathcal{L}(V, W)$, the null space of T, denoted null(T) is

$$\operatorname{null}(T) = \{ \vec{v} \in V \mid T(\vec{v}) = \vec{0} \}.$$

• For $T \in \mathcal{L}(V, W)$, the range of T, denoted range(T) is

$$\operatorname{range}(T) = \{ T(\vec{v}) \mid \vec{v} \in V \}.$$

- A linear map $T \in \mathcal{L}(V, W)$ is called invertible if there exists a linear map $S \in \mathcal{L}(W, V)$ such that ST is the identity on V and TS is the identity on W.
- Suppose $T \in \mathcal{L}(V)$. A nonzero vector $\vec{v} \in V$ is called an eigenvector of T corresponding to the eigenvalue $\lambda \in \mathbb{F}$ if

$$T(\vec{v}) = \lambda \vec{v}.$$

1. 6 marks Let $S, T : \mathbb{P}_3 \to \mathbb{P}_3$ be the linear maps given by

$$T(p(x)) = x \left(\frac{d}{dx}p(x)\right)$$
$$S(p(x)) = 2p(0)$$

(the second line is not a typo, S sends p to a constant function).

(a) Compute the matrix of S with respect to the basis $\{1, x, x^2, x^3\}$

Solution: We compute	
	S(1) = 2
	S(x) = 0
	$S(x^2) = 0$
	$S(x^3) = 0$
So the matrix of S is	
	$(2 \ 0 \ 0 \ 0)$
$\mathcal{M}(S)$	$(1) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0$

Recall that $S, T : \mathbb{P}_3 \to \mathbb{P}_3$ are linear maps given by

$$T(p(x)) = x\left(\frac{d}{dx}p(x)\right)$$
$$S(p(x)) = 2p(0)$$

(the second line is not a typo, S sends p to a constant function).

(b) Compute the matrix of T with respect to the basis $\{1, x, x^2, x^3\}$

Solution: We compute
T(1) = 0
T(x) = 1
$T(x^2) = 2$
$T(x^3) = 3$
So the matrix of T is
$\mathcal{M}(S) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$

(c) Is S + T invertible? Justify your answer.

Solution: Notice that $\mathcal{M}(S+T) = \mathcal{M}(S) + \mathcal{M}(T)$, so $\mathcal{M}(S+T) = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ and since this is an upper-triangular matrix, the determinant of the second statement of the second statemen

and since this is an upper-triangular matrix, the determinant is the product of the diagonal entries, which is 12, so the matrix is invertible and therefore the linear transformation S+T is invertible. 2. <u>4 marks</u> Suppose $S, T \in \mathcal{L}(V)$ are such that range $(S) \subseteq \text{null}(T)$. Prove that $(ST)^2 = 0$.

Solution: Since range(S) \subseteq null(T), we have that TS = 0 is the zero transformation. Then using associativity, we have

$$(ST)^{2} = (ST)(ST) = S(TS)T = S(0)T = 0.$$

3. 5 marks Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map. Suppose that

$$(1, -1, 0, 0), (0, 1, -1, 0), (0, 0, 1, -1)$$

are in $\operatorname{range}(T)$. Is is possible that the list

is a basis for $\operatorname{null}(T)$? Justify your answer.

Solution: We claim that the list (1, -1, 0, 0), (0, 1, -1, 0), (0, 0, 1, -1) is linearly independent. To check this, we use row reduction

(1	0	0 \		/1	0	0 \		/1	0	0 \		/1	0	0)
-1	1	0		0	1	0		0	1	0		0	1	0
0	-1	1	\rightarrow	0	-1	1	\rightarrow	0	0	1	\rightarrow	0	0	1
$\begin{pmatrix} 1\\ -1\\ 0\\ 0 \end{pmatrix}$	0	-1/		$\left(0 \right)$	0	-1/		$\left(0 \right)$	0	-1/		$\sqrt{0}$	0	0/

So the vectors are linearly independent. Therefore dim range $(T) \ge 3$, and by the FTLM, we have dim null $(T) \le 1$. So any basis of null(T) has at most one element, and therefore it is not possible that (1, 0, 0, 0), (1, 1, 0, 0)is a basis for null(T). 4. 5 marks Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that if λ is an eigenvalue of P, then $\lambda = 0$ or $\lambda = 1$.

Solution: Let \vec{v} be an eigenvector of P with eigenvalue λ . Then $P\vec{v} = \lambda v$. Applying P to both sides yields $P^2\vec{v} = P\lambda\vec{v} = \lambda^2\vec{v}$. Since $P^2 = P$, we also have $P^2\vec{v} = P\vec{v} = \lambda\vec{v}$. So we have $\lambda^2\vec{v} = \lambda\vec{v}$, or, equivalently, $(\lambda^2 - \lambda)\vec{v} = \vec{0}$, and since $\vec{v} \neq \vec{0}$ this implies that $\lambda^2 - \lambda = \lambda(\lambda - 1) = 0$, and therefore $\lambda = 0$ or $\lambda = 1$.