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1 Introduction

The uniform spanning tree has had a fruitful history in probability theory.

Most notably, it was the study of the scaling limit of the UST that led Oded

Schramm [Sch00] to introduce the SLE process, work which has revolutionised

the study of two dimensional models in statistical physics. But in addition,

the UST relates in an intrinsic fashion with another model, the loop erased

random walk (or LEW), and the connections between these two processes allow

each to be used as an aid to the study of the other.

These notes give an introduction to the UST, mainly in Zd. The later

sections concentrate on the UST in Z2, and study the relation between the

intrinsic geometry of the UST and Euclidean distance. As an application, we

study random walk on the UST, and calculate its asymptotic return probabil-

ities.

This survey paper contains many results from the papers [Lyo98, BLPS,

BKPS04], not always attributed.

Finite graphs. A graph G is a pair G = (V,E). Here V is the set of vertices

(finite or countably infinite) and E is the set of edges. Each edge e is a two

element subset of V – so we can write e = {x, y}. We think of the vertices

as points, and the edges as lines connecting the points. It will sometimes be
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useful to allow multiple edges between points. If {x, y} ∈ E we write x ∼ y,

and say that x, y are neighbours, and that x is connected to y.

Now for some general definitions. Write |A| for the number of elements in

the set A.

(1) We define d(x, y) to be the length n of the shortest path x = x0, x1, . . . ,

xn = y with xi−1 ∼ xi for 1 ≤ i ≤ n. If there is no such path then we

set d(x, y) =∞. We also write for x ∈ G, A ⊂ G,

d(x,A) = min{d(x, y) : y ∈ A}. (1.1)

(2) G is connected if d(x, y) <∞ for all x, y.

(3) G is locally finite if N(x) = {y : y ∼ x} is finite for each x ∈ G, – i.e.

every vertex has a finite number of neighbours.

(4) Define balls in G by

Bd(x, r) = {y : d(x, y) ≤ r}, x ∈ G, r ∈ [0,∞).

(5) For A ⊂ G write |A| for the cardinality of A. We define the exterior

boundary of A by

∂A = {y ∈ Ac : there exists x ∈ A with x ∼ y}.

Set also

∂iA = ∂(Ac) = {y ∈ A : there exists x ∈ Ac with x ∼ y }.

We use the notation An ↑↑ G to mean that An is an increasing sequence of

finite sets with ∪nAn = G.

From now on we will always assume:

G is locally finite and connected.

Set

µxy =

{
1 if {x, y} ∈ E,
0 if {x, y} 6∈ E,

and let

µx =
∑
y∈V

µxy,
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so that µx is the degree of x. (Later we will allow more general edge weights.)

The adjacency matrix AG of G is the V × V matrix defined by:

Axy = δxy − µxy, (x, y) ∈ V × V.

Spanning Trees. A cycle in a graph is a closed finite loop, with no intersections.

More precisely a cycle consists of a sequence of edges ei = {xi−1, xi}, i =

1, . . . , k, with xk = x0, and {xi, 0 ≤ i ≤ k − 1} all distinct. (Note that

{x0, x1}, {x1, x0} is a cycle.) A graph G is a tree if it contains no cycles of

length greater than 2. A subgraph G′ = (V ′, E′) ⊂ G is exactly what one

would expect: that is G′ is a graph, V ′ ⊂ V and E′ ⊂ E. A spanning tree T

for G is a subgraph T = (VT , ET ) which is a tree, and which spans G, so that

VT = V . Write T (G) be the set of spanning trees.

Spanning trees have a long history in combinatorics, going back at least as

far as Kirchoff in 1847:

Theorem 1.1 (Matrix Tree Theorem [Kir47].) Let G be a finite graph, x ∈
V = VG, and let AG[x] be the adjacency matrix AG with the row and column

associated with x deleted. Then the number of spanning trees is

N(G) = detAG[x].

Kirchoff is familiar for his laws for electrical currents, and in fact the same

(short) paper also introduces his network laws, and obtains an expression for

effective resistance in terms of the number of spanning trees. An English

translation can be found in [Kir47E].

Definition 1.2 Given a graph, we can turn it into an electrical circuit by

replacing each edge by a unit resistor. Let A0, A1 be (disjoint) subsets of a

finite graph V . Suppose that A1 is placed at electrical potential 1, and A0 at

potential 0. Then current flows in the network according to Ohms/Kirchoff’s

laws; let I be the current which flows from A0 to A1. We define the effective

resistance between A0 and A1 to be

Reff(A0, A1) = Reff(A0, A1;G) = I−1. (1.2)

We also write Reff(x, y) = Reff({x}, {y}).
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The inverse of Reff is effective conductance. We have the following useful

characterization of Ceff(A0, A1) as the solution to a variational problem. Define

the energy form

E(f, f) = 1
2

∑
x

∑
y

µxy(f(x)− f(y))2. (1.3)

In electrical terms, E(f, f) is the energy dissipation in the circuit if a potential

f is imposed. Let F(A0, A1) = {f : V → R s.t. f |Ak
= k, k = 0, 1}. Then

Ceff(A0, A1) = Reff(A0, A1)−1 = inf{E(f, f) : f ∈ H(A0, A1)}. (1.4)

The definition (1.4) extends to infinite graphs, but there are difficulties with

(1.2), in that we need to exclude currents which flow out to infinity and back

again.

Theorem 1.3 ([Kir47].) Let G = (V,E) be a graph, and e = {x, y} ∈ E. Let

NG be the number of spanning trees in G, and N e
G be the number of spanning

trees which contain the edge e. Then

Reff(x, y) =
N e
G

NG
. (1.5)

Definition 1.4 A uniform spanning tree (UST) on a finite graph is a spanning

tree chosen randomly (with uniform distribution) from the set of spanning

trees. More precisely, let N = |T (G)| be the number of spanning trees, and P
be the probability measure on T (G) which assigns mass 1/N to each element

(tree) in T (G). The UST is a random element U of T (G) selected by the

probability measure P.

Simulation of the UST. One is interested in simulating the UST on a finite

graph G. That is, given a graph G, and a supply of independent uniform [0, 1]

numbers (i.e. random variables), ξ = (ξ1, ξ2, . . . ), one wants an algorithm

which produces a spanning tree U = U(ξ) with the property that for any fixed

spanning tree T0 ∈ T (G), P(U = T0) = 1/N , where N = |T (G)|.
A crude algorithm. Make a list of all N spanning trees in T (G), call these

T1, T2, . . . , TN . Then choose Tk with probability 1/N .

This algorithm is simple and obviously correct – i.e. the tree it produces

has the right distribution. However, it is slow and requires lots of memory,
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since one has to make a list of all the trees. In fact it is very slow: if G is a

31× 31 square in Z2, then |T (G)| ≈ 10500.

A better algorithm using the Matrix Tree Theorem. Fix an edge e. The MTT

gives the number NG of spanning trees of G, and also the number NG′ of

spanning trees in the graph G′ = (V,E−{e}); each of these is a spanning tree

of G which does not contain e. So

P(e 6∈ U) =
NG′

NG
.

Use this to make a decision about whether e is in the random UST or not.

Then remove e from the graph, and continue with the reduced graph. Since

determinants, and so NG, can be computed in polynomial time, this algorithm

enables the UST to be simulated in polynomial time.

In the late 1980s, as a result of conversations between Doyle, Diaconis,

Aldous and Broder, it was realised that paths in the UST are also paths of loop

erased walks. This led Aldous and Broder to produce improved algorithms for

the UST – see [Ald90, Bro]. I will jump over these, and go on to describe the

current best algorithm, Wilson’s algorithm (WA) – see [Wil96].

Random walk on a graph. Let G = (V,E) be a graph (finite or infinite). The

(discrete time) simple random walk on G is a random process X = (Xn, n ∈
Z+) such that

P(Xn+1 = y|Xn = x) =
µxy
µx

= P (x, y).

We write Px( · ) to denote probabilities if X0 = x.

We also define the stopping times

TA = min{n ≥ 0 : Xn ∈ A},
T+
A = min{n ≥ 1 : Xn ∈ A},
τA = TAc ,

and as usual write Tx = T{x}.

Loop erased random walk. This model was introduced by Lawler in 1980 – see

[Law80]. Let G = (V,E) be a finite graph, and γ = (x0, x1, . . . , xn) be a finite

path in G. We say γ is self avoiding if the points x0, . . . , xn are distinct. The

loop erasure of γ, denoted L(γ) is defined as follows.

Step 1. Set γ0 = γ, and set k = 0.
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Step 2. If γk is a self-avoiding path then set L(γ) = γk.

Step 3. If not, write γk = (y0, y1, . . . , ym) and let

j2 = min
{
i : yi ∈ {y0, . . . , yi−1}

}
, j1 = min{i : yi = yj2}.

Then set γk+1 = (y0, . . . , yj1 , yj2+1, . . . , ym). (So γk+1 is the path γk with the

loop {yi, j1 < i ≤ j2} erased.) Now continue with Step 2.

Since γ is finite, and each erased loop contains at least one point, it it is

clear that this procedure terminates, and defines a self avoiding path.

Now let x be a vertex in G, and A ⊂ V , and let X0 = x,X1, X2, . . . be a

SRW on G started at x. The loop erased walk from x to A, denoted LEW(x,A)

is defined to be L(γ), where γ = (X0, X1, . . . , XTA). This is clearly a random

self-avoiding path from x to A.

Given a process or path X we write L(X) for the chronological loop erasure

of X. It is easy to find examples which show that if the loops are erased in

reverse order than one can end up with a different path. Originally it was

thought that LEW might provide a model for SAW, but subsequently physi-

cists have decided that SAW and LEW are in different ‘universality classes’.

Wilson’s algorithm. This proceeds as follows:

(0) Choose an ordering {z0, z1, . . . , zm} of V .

(1) Let U0 = {z0}.
(2) Given Uk run LEW(zk+1,Uk) (independently of everything before), and let

Uk+1 = Uk ∪ LEW(zk+1,Uk). (If zk+1 ∈ Uk already then LEW(zk+1,Uk) just

consists of the point zk+1, and Uk+1 = Uk.)
(3) Stop when there are no vertices left to add – i.e. when Uk has vertex set

V .

It is clear that Wilson’s algorithm (WA) gives a random spanning tree. It

is not so obvious that it gives the uniform spanning tree – i.e. that each fixed

spanning tree T0 ∈ T (G) has the same probability of being chosen.

Correctness of Wilson’s algorithm. The proof uses a clever embedding of the

SRW and LEW in a more complicated structure.

Fix the tree root z0 ∈ V . For all x 6= z0 define stacks (ξx,i, x ∈ V −{z0}, i ∈
N) as follows. The stack r.v. are all independent, and

P(ξx,i = y) = P (x, y) =
µxy
µx

, i ≥ 1.
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So each element in a stack at x ∈ V points to a random neighbour of x.

We will see that the stacks determine:

(a) A SRW on G which ends at z0,

(b) An implementation of WA which leads to a directed spanning tree U .

The stacks give a SRW on G as follows. Let z1 6= z0. Let X0 = z1, and use

ξz1,1 to find a random neighbour of z1, y say, and set X1 = y. Then ‘pop’ the

value ξz1,1 from the z1-stack, so that the top element of the stack is now ξz1,2.

Then use ξy,1 to choose X2, and continue until the SRW reaches z0, where it

ends.

Since we can define SRW from the stacks, we can also use the stacks to run

WA. Use the stacks to define a SRW starting at z1, which gives LEW(z1, {z0}),
and continue. (At this point in the argument we assume that the sequence

of start points z1, . . . , zn has been chosen in advance. Ultimately we will find

that we get the same tree whatever the choice of (zi) is, so that the tree we

get only depends on the stack r.v.)

Suppose that at some point the SRW is about to start a cycle, say from

y0 → y1 → y2 → · · · → yk = y0. Let ξx,nx be the top values in the stacks at

this time. Then we must have

ξyi,nyi
= yi+1, for i = 0, . . . , k − 1;

i.e. we see a cycle “sitting at the top of the stacks”. As the SRW goes round

the cycle the values at the top of each stack on the cycle get popped. We call

this ‘popping the cycle’, and can regard this as a single step of the algorithm.

We can therefore rephrase the algorithm as follows: starting with the col-

lection of stack r.v., we pop the cycles in some order, until no cycles remain.

At that point the stacks give a self-avoiding path from each x ∈ V to the root

z0. The sequence z1, . . . , zn will determine the order of cycle popping, and one

key point to be proved is that in fact the order in which cycles are popped

makes no difference.

Lemma 1.5 With probability 1, only finitely many cycles are popped.

Proof. For a graph G = (V,E) let Ω(G) be the space of stack variables, and

Ω0(G) be the set of ω ∈ Ω(G) such that for each x ∈ V and y ∼ x, ξx,k = y

for infinitely many k. Clearly we have P(Ω0(G)) = 1. We prove a slightly
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stronger result: for any graph G and any ω ∈ Ω0(G), only finitely many cycles

can be popped.

Suppose that this is false, and let G = (V,E) with root z0 be a smallest

graph which is a counterexample. So there exists ω ∈ Ω0(G), such that the

stack variables ξx,i(ω) allow an infinite sequence of poppable cycles. Denote

these C1, C2, . . . Let x ∼ z0. Since ω ∈ Ω0(G) there exists a smallest k such

that ξx,k = z0. Then x can be contained in at most k of the cycles Ci, since

after x is popped k times the r.v. ξx,k = z0 will be on top of the stacks, and

so will never be popped again. Let Cm be the last cycle containing x to be

popped. Then Cm+1, . . . is an infinite sequence of poppable cycles for the

graph obtained by collapsing {x, z0} to a single point z′0, which contradicts

the minimality of G. �

Suppose initially that there is no cycle in the top stacks. Then whatever

order we choose the points zi, i ≥ 1 in, WA will give the same tree. Given a

tree T0 with root z0, for each point x there is a point D(x, T0) (descendant of

x in the tree T0) which is the next point on the unique path from x to z0. Let

us calculate the probability of seeing T0 ‘on top of the stacks’. For each x ∈ V
we must have ξx,1 = D(x, T0). So this probability is

P(T0) =
∏
x 6=z0

P
(
ξx,1 = D(x, T0)

)
=
∏
x 6=z0

1

µx
= µz0

∏
x∈V

1

µx
.

The final term does not depend on T0; write pG(z0) for this probability.

Define a labelled cycle in the stacks to be a sequence

C =
(

(z0, i0), (z1, i1), . . . , (zk, ik) = (z0, i0)
)

such that

ξzj ,ij = zj+1 for each j = 0, . . . , k − 1.

Note that two distinct labelled cycles can have a non-empty intersection. The

probability a particular labelled cycle C is in the stacks is

P(C) =

k∏
j=0

P(ξzj ,ij = zj+1) =

k∏
j=1

P (zj , zj+1) =

k∏
j=1

µ−1
zj .

The algorithm proceeds by popping labelled cycles until there are no cycles left

to pop and the stacks show a UST. We call a popping procedure P an order
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of popping labelled cycles, which ends with a tree, and write (C1, . . . , Cm)

for the (labelled) cycles which are popped in order by P. We also write

P = (C1, . . . , Cm).

Lemma 1.6 Let G be a finite graph, and ω ∈ Ω0(G)). Let C1, C ′1 be cycles

which are initially on top of the stacks, and P = (C1, . . . , Cm) be a popping

procedure for which the first cycle popped is C1.

(a) We have that C ′1 = Ck for some k ∈ {2, . . . ,m}.
(b) P ′ = (C ′1, C1, . . . , Ck−1, Ck+1, . . . , Cm) is a popping procedure, and P and

P ′ lead to the same final tree.

Proof. (a) Under the procedure the cycle C ′1 will remain on top of the stacks

until some r.v. in C ′1 is popped. However, if at some point distinct labelled

cycles Cj and C ′1 are on top of the stacks, then the two cycles are disjoint,

so at most one can be popped. Thus C ′1 will remain until the whole cycle is

popped, and thus C ′1 = Ck for some 2 ≤ k ≤ m.

(b) Under the procedure P, the cycle C ′1 will still be on top when the cycle

Ck−1 is popped. After k steps each of P and P ′ will have popped the cycles

C ′1, C1, . . . , Ck−1, and so at that point will show the same r.v. on top of the

stacks. It follows that they will then end with the same tree. �

Proposition 1.7 If ω ∈ Ω0(G)) then any two popping procedures will end

with the same tree.

Proof. If not, then there exists a minimal graph for which this can fail; call

this G. Given any popping procedure P, define the weight w(P) to be the

number of r.v. popped. If there are popping procedures P1 and P2 which give

different outcomes, choose a pair (P1,P2) such that the sum of the weights

w(P1) +w(P2) is minimal. Write also T (P) for the tree given by the popping

procedure P.

Now look at the r.v. initially on top of the stacks, ξx,1 = ξx,1(ω). These

cannot form or a tree, or we would have P1 = P2 = ∅. There must therefore be

some cycles on initially on top: denote these C1, . . . , Cj . We can assume that

Pi pops Ci first, for i = 1, 2. Now let P ′1 be the procedure given by applying

the previous lemma to P1 and the cycle C2, so that P ′1 first pops C2 and then

C1, and then the remaining cycles (except C2) popped by P1. By Lemma 1.6
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we have T (P ′1) = T (P1), while by hypothesis we have T (P1) 6= T (P2). But

then if we consider the stacks given by popping C2, then the cycles P ′1 − C2

and P2 − C2 will give different trees, and will have smaller total weight than

the pair (P1,P2), a contradiction. �

It follows from this Proposition that (on the set Ω0(G)), for any labelled

cycle C, whatever popping procedure is used, either C will ultimately be

popped, or else C will never be popped. If C will ultimately be popped we

call C a poppable cycle.

Now look at a fixed set of labelled cycles C = {C1, . . . , Cn}, and a spanning

tree T0. By the above the probability we will have the Ci as poppable cycles,

and then have the tree T0 underneath is

( n∏
i=1

P(Ci)
)
× P(T0) = P(C)pG(z0).

Since this is the same for all trees T0, it follows that WA is correct, i.e. it

produces each spanning tree with equal probability.

Remark 1.8 The initial statement of the algorithm depends on fixing a se-

quence of vertices z0, z1, . . . , zm. However, once the stack r.v. are fixed, the

order of popping cycles does not affect the final tree obtained. So, any re-

ordering of {z1, . . . , zm} will give the same outcome. Further, the choice of zk
can be allowed to be random, and depend on the tree Tk−1.

Remark 1.9 Strictly speaking, WA produces a directed tree with a root z0,

and the argument above proves that once z0 is fixed than any two directed

trees have the same probability pG(z0). Once we fix the root, there is an

isomorphism between the set of directed and undirected spanning trees. Now

fix two undirected spanning trees T1 and T2. If we choose a root z0, write
−→
Ti for

the associated directed trees. Then WA with root z0 has the same probability

of producing
−→
T1 and

−→
T2, and hence the same probability of producing T1 and

T2. It follows that the choice of root will not affect the probability of obtaining

a particular spanning tree.

In a paper on LEW in Z3 [Koz] , G. Kozma comments:

“Of all the non-Gaussian models in statistical mechanics, LEW is probably



Loop Erased Walks and Uniform Spanning Trees 11

the most tractable”.

Because of Wilson’s algorithm UST is the next easiest.

Finally, we remark that the UST can be obtained from the FK random-

cluster model. This connection is due to Häggstrom [Hag95], and shows that

the uniform spanning tree belongs to the same family of models in statistical

physics as percolation, the Ising and Potts models. Further, the UST is in some

sense critical, since the tree has just enough bonds to form large connected

sets. For more on the random-cluster model see [Gr].

Let p ∈ (0, 1) and q > 0 , and define a probability measure on subsets

E′ ⊂ E as follows. Let n(E′) be the number of edges in E′, and k(E′) be the

number of connected components of the graph (V,E′). Then set

Pp,q(E′) = Z−1
p,q p

n(E′)(1− p)|E|−n(E′)qk(E′). (1.6)

Here Zp,q is a normalising constant. If q = 1 then the term with qk disappears,

and one obtains bond percolation with probability p on G. The Ising model

relates to q = 2.

Now consider the limit of (1.6) as p, q → 0 with q/p → 0. Let EC be a

smallest subset of E′ so that every component of (V,E′ − EC) is a tree, and

set c(E′) = |EC |, n1(E′) = n(E)− c(E). We have n1(E′) + k(E′) = |V |, so we

can write

Pp,q(E′) = Z−1
p,q (1− p)|E|−n(E′)p|V |pc(E

′)(q/p)k(E′)

= Z ′p,q(1− p)−n(E′)pc(E
′)(q/p)k(E′).

Since p is small, the measure Pp,q will concentrate on configurations with

c(E′) = 0 – that is on subgraphs which are trees. Since q/p is also small, it

also concentrates on configurations which have only one component – so on

spanning trees. Finally, if E′ is any spanning tree then k(E′) = 1, c(E′) = 0

and n1(E′) = |V | − 1, so Pp,q(E′) will be the same for any E′. Hence the

limiting measure is uniform on spanning trees.

2 Infinite graphs

An infinite graph (such as Zd) will have infinitely many spanning trees, so it

is no longer clear how to define one uniformly. Let Bn = [−n, n]d ⊂ Zd, and



12 Martin Barlow

write Pn for the probability law of the UST on Bn. Then following [Pem91]

we wish to show that the laws Pn have a limit P.

We will use Wilson’s algorithm, and begin with a calculation for finite

graphs. We write U = UG for the UST on a graph G.

Lemma 2.1 Let G = (V,E) be finite, and e = {x, y} ∈ E. Then

P(e ∈ U) = µxyReff(x, y). (2.1)

Proof. Calculations with random walks and electrical resistance give

Px(Ty < T+
x ) =

1

µxReff(x, y)
. (2.2)

We construct U by using WA with root y and then adding LEW(x, y). Then

e ∈ U if and only if this LEW just consists of e. (If the LEW is not e, then e

can never be added during the later stages of the construction, since adding e

would create a loop.)

Write pe = P(e ∈ U). Then pe is the probability that X first hits y by a

step from x. Using the Markov property we have

pe = Px(X1 = y) + Px(T+
x < Ty)pe,

and so

pe =
Px(X1 = y)

Px(Ty < T+
x )

=
µxy/µx

1/(µxReff(x, y))
= µxyReff(x, y).

�

Remark. In an unweighted graph we have µxy = 1 if x ∼ y, so Kirchoff’s

Theorem 1.3 follows immediately.

Now let G = (V,E) be an infinite graph. (As usual we will assume G is

locally finite and connected.) Let Vn be an increasing sequence of connected

finite sets, with ∪Vn = V . We define the subgraphs Gn = (Vn, En) in the

obvious way: En =
{
{x, y} : x, y ∈ Vn

}
. We also define the wired subgraphs

GWn = (V W
n , EWn ) as follows. Let ∂n be an additional point, V W

n = Gn ∪{∂n},
and let EWn = En ∪

{
{x, ∂n}, x ∈ ∂iVn

}
. So Gn and GWn are the same away

from the boundary ∂iVn, but for the graph GWn every point on the boundary

∂iVn is connected to the extra point ∂n. We write UGn ,UGW
n

for the USTs on

Gn and GWn , and write PFn ,PWn for their laws. (Here ‘F’ stands for free.)

The key to the existence of a limit of the laws P.n is the following.
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Lemma 2.2 Let e ∈ G1. Then for any n ≥ 1

P(e ∈ UGW
n

) ≤ P(e ∈ UGW
n+1

) ≤ P(e ∈ UGn+1) ≤ P(e ∈ UGn). (2.3)

Proof. This is easy from Lemma 2.1 and standard monotonicity properties of

electrical networks using the variational characterisation of effective conduc-

tance (1.4). �

Now let G = (V,E) be a finite graph, and F be a subset of E with no

cycles. We define the collapsed graph G/F by collapsing any pair of vertices

connected by edges in F to a single point. (This graph may have loops and

multiple edges.)

Lemma 2.3 Let G be finite, F ⊂ E with no cycles. Let T ∈ T (G). Then

P(UG = T |F ⊂ UG) = P(UG/F ∪ F = T ). (2.4)

Proof. By induction, it is enough to consider the case when F = {e}. Let

T1, T2 ∈ T (G) be trees containing e, and let T ′1, T
′
2 be their contractions in

G′ = G/F . Consider the following construction of a spanning tree for G:

(i) Construct a UST U ′ for G′.

(ii) Add the edge e to create a spanning tree U = U ′ ∪ {e} for G.

Then we have P(U ′ = T ′1) = P(U ′ = T ′2), and so P(U = T1) = P(U = T2).

Thus U is uniform on the set of all spanning trees containing e, which proves

(2.4). �

Proposition 2.4 Let Gn be as above, and F = {e1, . . . , em} ∈ E. Then for

all n ≥ 1,

P(F ⊂ UGW
n

) ≤ P(F ⊂ UWn+1) ≤ P(F ⊂ UFn+1) ≤ P(F ⊂ UFn ). (2.5)

Proof. Assume n is large enough so that F ⊂ Vn − ∂iVn. By Lemma 2.3 we

have, writing Fm−1 = {e1, . . . , em−1},

P(e1, . . . , em ∈ UGW
n

) = P(Fm−1 ⊂ UGW
n
|em ∈ UGW

n
)P(Fm−1 ⊂ UGW

n
)

= P(Fm−1 ⊂ UGW
n /{em})P(Fm−1 ⊂ UGW

n
).
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Using induction and Lemma 2.2 the conclusion then follows. �

Although we will not need this, we remark that we do have an expression

for the law of the UST in a graph finite G. Define the transfer current matrix

Y (e, e′) on E × E by taking Y (e, e′) to be the current which flows in the

(directed) edge e′ if a current of size 1 is imposed on e.

Theorem 2.5 (Transfer Current Theorem, [BuPe].)

P(e1, . . . , em ∈ U) = det(Y (ei, ej)1≤i,j≤m).

Definition 2.6 A spanning forest of a graph G is a subgraph F = (V,EF )

with vertex set V such that each connected component of F is a tree.

Using Proposition 2.4 one obtains:

Theorem 2.7 Let G = (V,E) and Vn ↑↑ V . Then the limits PF and PW of

the laws PFn and PWn exist.

We call PW the wired spanning forest and PF the free spanning forest, and

write UF = UFG , UW = UWG for the associated random variables.

The following properties of the wired and free spanning forests follow from

this construction.

Theorem 2.8 (1) All the components of UF and UW are infinite trees.

(2) If A is any increasing event then

PW (A) ⊂ PF (A). (2.6)

(3) There exists a coupling of UF and UW such that UW ⊂ UF .

(4) The laws of UW and UF on Zd are translation invariant.

Corollary 2.9 Suppose that P(e ∈ UF ) = P(e ∈ UW ) for all edges e. Then

UF = UW .

We now wish to explore the properties of the wired and free UST. Our first

remark is that they can be different.

Example. Let G be the binary tree. Fix a vertex o ∈ V , and set Vn = B(0, n).

Then clearly UGn = Gn. However, a calculation using (2.2) in GWn gives
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P o(T∂n < T+
o ) ' 1

2 , so that if x ∼ o then P x(To < T∂n) ' 1
2 . Using WA with

root ∂n it then follows that with positive probability the edge e = {o, x} is not

in UGW
n

. Taking limits we have P(e ∈ UW ) < 1, so with positive probability

UW is not connected – i.e. it is a forest and not a tree. With a little more

work, one has that UW is a forest with infinitely many components, a.s.

A function h : V → R is harmonic if

∆h(x) =
∑
y

µxy(h(y)− h(x)) = 0 for all x ∈ V. (2.7)

We set HD to be the set of h which are harmonic and with E(h, h) < ∞ –

this is called the set of harmonic Dirichlet functions. Clearly HD contains

constant functions.

Theorem 2.10 ([BLPS]) The following are equivalent:

(1) UW = UF a.s.

(2) The space HD(G) is trivial, that is consists only of constants.

It follows that UW = UF for Zd. Here is another proof of that fact, from

Section 6 of [BLPS].

Definition 2.11 A graph G is amenable if there exists Vn ↑↑ V such that

lim
n

|∂Vn|
|Vn|

= 0.

Lemma 2.12 Let G be amenable. Let F be a fixed forest in G, such that

all components of F are infinite. Let Fn be the restriction of F to Gn. If

deg(x|Fn) is the degree of x in Fn then

lim
n
|Vn|−1

∑
x∈Vn

deg(x|Fn) = 2. (2.8)

Further, the limit above is uniform in F .

Proof. Let kn be the number of components in the subgraph F|Vn . Then

kn ≤ |∂Vn|. If T is a finite tree, then T has |T | − 1 edges, and so the number

of edges in F|Vn is |Vn| − kn. Since each edge contains 2 vertices,∑
x∈Vn

deg(x|Fn) = 2(|Vn| − kn),

and taking the limit in n gives (2.8). �
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Theorem 2.13 On Zd, UW = UF .

Proof. Let Vn = B∞(0, n) = [−n, n]d. As UW is translation invariant, aW =

E(deg(x|UW )) does not depend on x. Taking expectation in (2.8) (and using

the fact that the limit is uniform) we obtain

2 = lim
n
|Vn|−1

∑
x∈Vn

E(deg(x|UW |Vn)),

from which it follows that aW = 2. Similarly aF = 2. Using symmetry again

we have for any edge e that

P(e ∈ UF ) = P(e ∈ UW ) =
1

d
,

and hence UW = UF . �

The construction of the measures PW and PF do not give a straightfor-

ward random construction of the forests UW and UF . However, for the wired

spanning forest, one can extend Wilson’s algorithm to the infinite graph.

First, if G is recurrent, then WA can be performed exactly as in the fi-

nite case. At each stage the SRW started at zn will hit the tree Tn−1 with

probability 1.

If G is transient then since X will hit any point only finitely many times, the

loop erasure of X, denoted LEW(x0,∞) can be defined. Further, if Vn ↑↑ V
then the paths LEW(x0, V − Vn) converge to LEW(x0,∞).

Wilson’s algorithm rooted at infinity is as follows. As before, list the set V as

a sequence V = {z0, z1, . . . }. Then:

(1) Let U0 = LEW(z0,∞).

(2) Given Un−1, let Un = Un−1 ∪ LEW(Un−1), and continue.

Theorem 2.14 (a) If G is recurrent then Wilson’s algorithm creates a tree

with law equal to UW .

(b) If G is transient then Wilson’s algorithm rooted at infinity creates a forest

with law equal to UW .

Proof. Let Vn ↑↑ V . For both parts, the proof proceeds by fixing a ball

B(o,R) ⊂ V , and showing that, with high probability, for large enough n, the
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restrictions of the trees produced by WA in the infinite case, and in GWn , are

the same.

Write X for the SRW on G, and X(GW
n ) for the SRW on GWn . The argument

uses the fact that for x ∈ B(o,R), A ⊂ B(o,R), we have

lim
n

Px(X(GW
n ) hits A) = Px(X hits A).

In the transient case this fails if we replace X(GW
n ) by X(Gn). �

Remark. If G is recurrent then UF = UW .

We now write Ud for the UST in Zd, and are interested in whether Ud is a

tree or a forest.

Given a random process X = (Xn, n ≥ 0) in Zd we define the range of X

by

R(X) = {X0, X1, . . . } ⊂ Zd. (2.9)

We say that X(0) and X(1) intersect if R(X(0)) ∩ R(X(1)) 6= ∅, and will need

the following well known result on intersections of random walks.

Theorem 2.15 Let X(0) and X(1) be independent SRW in Zd, with different

initial points.

(a) If d ≥ 5 then P(R(X(0))∩R(X(1)) = ∅) > 0, and P(|R(X(0))∩R(X(1))| =
∞) = 0. Further,

lim
|x0−x1|→∞

P(R(X(0)) ∩R(X(1)) 6= ∅|X(0) = x0, X
(1) = x1) = 0. (2.10)

(b) If d ≤ 4 then P(|R(X(0)) ∩R(X(1))| =∞) = 1.

Proof. (Sketch). The Green’s function for SRW on Zd with d ≥ 3 satisfies

G(x, y) =

∞∑
n=0

P x(Xn = y) ' 1

1 ∨ |x− y|d−2
.

So if X
(i)
0 = xi, i = 0, 1 then straightforward computations give for d ≥ 5 that

E
∑
x∈Zd

∞∑
n=0

∞∑
m=0

1
(X

(0)
n =x,X

(1)
m =x)

=
∑
x∈Zd

G(x0, x)G(x1, x) � 1

|x0 − x1|d−4
.

This establishes (2.10), and the other assertions in (a) follow.

The proof of (b) is a little harder, particularly when d = 4 – see [Law91]. �
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Theorem 2.16 Let d ≥ 5. Then Ud consists of infinitely many components

a.s.

Proof. It is enough to prove that for any ε > 0 and N ∈ N,

P(Ud has at least N components) > 1− ε. (2.11)

By (2.10) we can find points x1, . . . , xN such that if X(i) denote independent

SRW started at xi then for each i 6= j, P(R(X(i)) ∩ R(X(j)) 6= ∅) < N−2ε.

Now apply WA rooted at infinity, starting the SRW at the points xi. The

probability that any of the SRW paths meet is less than ε, and so the same

holds for their loop erasures. So at stage N of the algorithm, we obtain, with

probability greater than 1− ε, N distinct paths, each going from a point xi to

infinity. The additional stages of the algorithm cannot join these components,

so we have proved (2.11). �

It is harder for a SRW to hit an independent LEW than another SRW, so

Theorem 2.15 is not enough on its own to handle the cases d ≤ 4. However,

we have the following remarkable result.

Theorem 2.17 ([LPS03]) Let G be a transient graph, and X,Y be indepen-

dent SRW. Write L(X) for the loop erasure of X. Then |R(L(X))∩R(Y )| =
∞ a.s. on {|R(X) ∩R(Y )| =∞}.

Proof. (Sketch of main idea). For m ≥ 0 let L(m) = L(X0, . . . , Xm), Define

Im,n = 1(Xm=Yn),

TXm = min{k ≥ 0 : L
(m)
k ∈ X[m,∞)},

T Ym,n = min{k ≥ 0 : L
(m)
k ∈ Y [n,∞)},

Jm,n = Im,n1(TY
m,n≤TX

m ).

Thus TXm is the first point on the path L(m) which is hit by X after m, and

T Ym,n is the first point on L(m) which is hit by Y after n. Let FX and FY be

the filtrations of the random walks X and Y . Then

EIm,n ≥ EJm,n = E
(
Im,nP(T Ym,n ≤ TXm |FXm ∨ FYn )

)
. (2.12)
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However, on {Im,n = 1} we have Xm = Yn, and the path L(m) is FXm ∨ FYn
measurable. So the probability in (2.12) is the probability that one of two

SRW stated at the same point hits a fixed path at an earlier point than the

other, and so is at least 1
2 . Thus

EIm,n ≥ EJm,n ≥ 1
2EIm,n. (2.13)

Now set

I =
∑
n

∑
m

In,m, J =
∑
n

∑
m

Jn,m.

If Jm,n = 1 then Y hits L(m) at a point which will not be erased later by L(X),

and so Y and L(X) intersect. It follows that {R(Y ) ∩R(L(X)) 6= ∅} = {J >
0}, while {R(Y ) ∩R(X) 6= ∅} = {I > 0}. Finally,

P(J > 0) ≥ (EJ)2

EJ2
≥ (EI)2

4EI2
. (2.14)

Thus we can control the intersections of Y and L(X) in terms of the intersec-

tions of Y and X. The final part of the proof is to study intersections in balls

to obtain a good lower bound in (2.14). �

Corollary 2.18 For d = 2, 3 a SRW and an independent LEW intersect in-

finitely often.

Theorem 2.19 Let d ≤ 4. Then Ud is a tree, a.s.

Proof. For d = 2 this is clear, from the extension of WA to a recurrent infinite

graph. For d = 3, 4 we use WA rooted at infinity: let γ be the initial path,

which we can take to be LEW(0,∞). By Theorem 2.15 and Corollary 2.18, if

X is a SRW in Zd then X hits γ with probability 1. So at each stage of WA

the new path connects with the existing component of the tree, and hence the

resulting set has just one component. �

3 Loop erased walk in Zd

As mentioned above, this was introduced by Lawler in 1980. We begin with

some general properties of LEW on any graph G = (V,E). Consider the
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random walk X with transition probabilities given by

PX(x, y) =
µxy
µx

, where µx =
∑
y

µxy. (3.1)

Here µxy are edge weights; we assume µxy > 0 if x ∼ y, and µxy = 0 whenever

x 6∼ y. For D ⊂ V let GD(x, y) be the Green function given by

GD(x, y) = Ex
τD∑
i=0

1(Xi=y). (3.2)

We have µxGD(x, y) = µyGD(y, x).

For simplicity we give the first result for a transient graph.

Theorem 3.1 [Law99] Let G be transient and γ = {x0, x1, . . . , xn} be a self

avoiding path. Set Dk = V −{x0, . . . , xk}, and D−1 = V . If L = LEW(x0,∞)

then

Px0((L0, . . . , Ln) = γ) =

n∏
j=1

PX(xi−1, xi)

n∏
j=0

GDj−1(xj , xj)Pxn(τ+
Dn

=∞).

(3.3)

This leads to

Theorem 3.2 (‘Domain Markov property’.) Let G = (V,E), x0 ∈ D ⊂ V ,

and let LD = LEW(x0, D
c). Let γ = (w0, . . . , wk) be a self avoiding path

in G with w0 = x0, and γ′ = (wk+1, . . . , wm) such that the concatenation

γ ⊕ γ′ = (w0, . . . , wm) is a self avoiding path from x0 to Dc. Let Y be SRW

on G with Y0 = wk, conditioned on {TDc < T+
γ }. Then

P
(
LD = γ ⊕ γ′|(LD0 , . . . , LDk ) = γ

)
= P

(
L(Y [0, τD]) = γ′

)
. (3.4)

These results mean that study of the law of a loop erased walk is likely to

involve studying conditioned random walks.

It is easy to verify that given a deterministic path γ and its time reversal

Rγ one has in general L(γ) 6= L(Rγ). However, (see [Law91]) for a Markov

chain the loop erasure of X and its time reversal do have the same law.

Lemma 3.3 ([Law99, Section 7.2].) Let γ = (x0, . . . , xn) be a random walk

path. Then L(γ) and R(L(Rγ)) have the same law.
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We now turn to LEW in Zd. We can summarise its properties as far as

scaling limits are concerned as follows:

For d ≥ 4 the LEW has standard Brownian motion as its scaling limit.

([Law80, Law86]).

For d = 2 LEW has SLE2 as its scaling limit [LSW04].

For d = 3 the scaling limit of LEW exists [Koz].

Length of LEW. For D ⊂ Zd let MD = |LEW(0, Dc)| be the length of a LEW

run from 0 to Dc. Define

Ld(n) = E0MBE(0,n).

Write

f(n) ≈ nθ to mean lim
n→∞

log f(n)

log n
= θ.

Then Lawler’s results give Ld(n) ≈ n2 for d ≥ 4. (In fact it is quite easy to

prove that Ld(n) � n2 when d ≥ 5. Much more delicate is that L4(n) ∼
n2(log n)−1/3.) For d = 3 Shiraishi [Sh] proves there exists θ3 such that

L3(n) ≈ nθ3 . While numerical estimates suggest that θ3 ' 1.63, the best

rigorous estimates are 1 < θ3 ≤ 5
3 .

From now on I will concentrate on Z2.

Theorem 3.4 ([Ken00]).

L2(n) ≈ n5/4. (3.5)

Remarks. 1. This was proved by R. Kenyon using dimer coverings, just

before the introduction of SLE. Although LEW has SLE2 as a scaling limit,

and SLE2 has Hausdorff dimension 5/4, I do not know of a quick argument

which gives (3.5) just from the SLE theory. (As it is possible to approximate

a smooth path by rough ones, one cannot expect to get a lower bound on L2

just from the convergence to SLE2.)

2. We will see below that L2(n) � n5/4, i.e. there exists C such that

C−1n5/4 ≤ L2(n) ≤ Cn5/4, n ≥ 1. (3.6)

3. Given (3.5), one expects that Mn = MBE(0,n) will be typically be of order

L2(n). But (3.5) is just a first moment result, and does not exclude (say) the

possibility that

P(Mn = n) = P(Mn = n5/4) = 1
2 .
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Here is a more precise statement of the convergence result in [LSW04].

Theorem 3.5 Let D be a domain in C with 0 ∈ D. Consider the follow-

ing measures on simple curves in D. For δ > 0 let µδ denote the law of a

LEW(0, Dc) in D ∩ δZd. Let ν be the law of SLE2 run from ∂D to 0, with

initial position chosen according to harmonic measure. Then µδ ⇒ ν, in the

Hausdorff topology.

Remark. There is no time parametrisation in this result; the problem of

obtaining convergence in the ‘natural parametrisation’ is still open. For a

discussion of this problem, and some partial results, see [AKM].

Metric and balls in the UST. Let U be a USF in Z2; i.e. U is a random

spanning forest in Zd, chosen according to the probability measure P on a

space of USFs. Let dU (x, y) be the (random) intrinsic graph metric for U :

that is the length of the shortest path in U connecting x and y. (We take

dU (x, y) = +∞ if there is no such path.) We define balls in U by

BU (x, r) = {y ∈ Z2 : dU (x, y) ≤ r};

and also define Euclidean balls by

BE(x, r) = {y ∈ Z2 : |x− y| ≤ r}.

We want to know what U looks like, and in particular how balls in the

intrinsic metric dU (x, y) compare with balls in the Euclidean metric |x− y|.
Since the paths of LEW in Z2 are quite rough, one expects that BU (x, r)

should be much smaller than BE(x, r). In fact, by Wilson’s algorithm the dU
distance from 0 to BE(0, r)c should be the length of a LEW run from 0 to

BE(0, r)c – that is roughly Ld(r). So it is natural to guess that

BE(0, r) ' BU (0, L2(r)). (3.7)

There is an obvious strategy to study U via LEW and Wilson’s algorithm.

We use WA and LEW to construct U , and use the estimates on L2(n) =

Ex|MBE(x,n)| to study the size of the balls BU (x, r). The following difficulties

arise:

1. Kenyon’s theorem gives a first moment result only.

2. One needs lots of LEW to build U , so to avoid accumulation of errors one
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needs very good control of the tail probabilities for LEW: A LEW which is

much too short or much too long would have a serious effect on the size and

shape of BU (0, r).

3. Lack of monotonicity of MD in D. Suppose D1 ⊂ D2 ⊂ Z2. Then

LEW(0, Dc
2) stopped when it exits D1 is not the same as LEW(0, Dc

1). In

fact, if D1 ⊂ D2 ⊂ Zd then one need not have

EMD1 ≤ EMD2 .

Here is an example, due to O. Angel and G. Kozma. Let V = Z, D1 =

{0, 1, . . . , N − 1} and D2 = Z+. Then |LEW(0,−1)| = 1 a.s., while it is easy

to verify that E|LEW(0, {−1, N})| = 2N/(N + 1).

In [Mas09] Robert Masson gave a new, more probabilistic, proof of Theorem

3.4. His argument proceeded as follows. Let Es(n) be the probability that a

SRW and an independent LEW in Bn = BE(0, n), started at neighbouring

points 0 = (0, 0) and e1 = (1, 0) fail to intersect:

Es(n) = P
(

SRW(0, Bc
n) ∩ LEW(e1, B

c
n) = ∅

)
.

Using the connection between LEW and SLE2, and the known expression

for the probability of non-intersection of Brownian motion and an SLE2 path

inside the unit disk, started in a ball of radius r ∈ (0, 1), Masson proved:

Theorem 3.6 [Mas09]

Es(n) ≈ n−3/4. (3.8)

The proof requires a number of estimates on SRW and LEW. Some of these

hold for the LEW in more general spaces, but at this point I will just discuss

Z2.

The first is a comparison of LEW in different domains. Let BE(0, n) ⊂
D ⊂ Z2. Let X be SRW on Z2, LD = L(X[0, τD]), and let µn,D be the law of

LD run up to its first exit from BE(0, n).

Theorem 3.7 (See [Mas09, Law99]). Let D1, D2 satisfy BE(0, kn) ⊂ D1 ∩
D2. Let γ be any path from 0 to ∂BE(0, n). Then

µn,D1(γ)

µn,D2(γ)
≤ 1 +

C

log k
. (3.9)
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Corollary 3.8 For each n the laws µn,BE(0,m) have a limit µ̂n as m → ∞.

The laws µ̂n are consistent, and define an infinite self avoiding path in Z2.

We call the limit in the corollary above LEW(0,∞).

Remark. This gives an alternative construction of the UST in Z2. Previously

the first step in WA was to take U1 = LEW(0, z). We can take the limit as

|z| → ∞, and start instead with U1 = LEW(0,∞).

The following result (which is not as easy as one would like) plays an

essential role. Write dE(x,A) = min{|x − y| : y ∈ A}, and τr = τBE(0,r). To

shorten our formulae we use the notation A∩/B to mean that A ∩B = ∅.

Theorem 3.9 (‘Separation Lemma’, [Mas09]). Let X be a SRW, and L an

independent LEW(0,∞). Set Ar = {X[1, τr]∩/L[1, τr]}, and

Wr = dE(Xτr , L[1, τr]) ∧ dE(Lτr , X[1, τr]).

Then there exists ci > 0 such that

P(Wr ≥ c1r|Ar) ≥ c2.

Using this Masson obtained

Lemma 3.10 [Mas09] The function Es(n) satisfies

c1Es(n) ≤ Es(m) ≤ c2Es(n), n ≤ m ≤ 4n. (3.10)

Using these results, Theorem 3.6 follows, using a comparison between SRW,

LEW and their continuum limits, i.e. Brownian motion and SLE2.

Given this control of Es(n), the next step is to obtain an exact expression

for the probability that a point z ∈ D is in the loop erased walk path. We

adopt the convention that when we write X[0, τA] for a path, τA = τXA is a

stopping time for X.

Since we also need a result for conditioned processes, we consider the more

general situation of a finite graph G = (V,E) with edge weights µxy. Let

D ⊂ V be a connected domain in G. We write Xz for the process X started

at z, and Y z,w for Xz conditioned on the event {Tw < τD}.
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Proposition 3.11 Let x, y ∈ D, and let σw = max{k ≤ τD : Yk = w}. Then

Px(y ∈ L(X[0, τD])) = GD(x, y)P(L(Y x,y[0, σy])∩/Xy[1, τD]) (3.11)

= GD(x, y)P(L(Y y,x[0, Tx])∩/Xy[1, τD]). (3.12)

where Xy, Y y,x and Y x,y are independent versions of these processes.

To obtain the equality between (3.11) and (3.12) one uses Lemma 3.3 and

the fact that the time reversal of Y x,y[0, σy] has the same law as Y y,x[0, σx]).

Proposition 3.12 L2(n) = EMBE(0,n) ≤ cn2Es(n).

Proof. Write B = BE(0, n). For z ∈ BE(0, n) set

q(z) = P
(
L(Y z,0[0, T0])∩/Xz[1, τD]

)
. (3.13)

For z ∈ B let rz = n− |z| be the distance from z to Bc. Set B′ = B(z, rz/4),

and write X = Xz,B. Then

q(z) ≤ P(L(Y z,0[0, τB′ ])∩/X[1, τB′ ]).

Inside B′ the conditioned process Y z,0 has the same distribution, up to con-

stants, as X, and therefore the same holds for L(Y z,0) and L(X). So if X ′ is

a SRW with X ′0 = z, independent of X,

P(L(Y z,0[0, τB′ ])∩/X[1, τB′ ]) ≤ cP(L(X ′[0, τB′ ])∩/X[1, τB′ ]) = Es(rz/4).

Hence if X0 is a SRW started at 0,

EMBE(0,n) =
∑
z∈B

P(z ∈ L(X0,B) ≤
∑
z∈B

GB(0, z)Es(rz/4)

�
n∑
r=1

r log(n/r)Es(r/4) � n2Es(n).

The final estimate follows from [BM10, Corollary 3.14]. �

The lower bound is more delicate, since one has to bound q(z) from below,

and so has to handle the processes Y z and Xz,D outside the ball B′.

Proposition 3.13 L2(n) = EMBE(0,n) ≥ cn2Es(n).
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Proof. Recall from (3.13) the definition of q(z). We have

EMBE(0,n) =
∑
z∈B

q(z)GD(0, z)

≥ c
∑

n/4≤|z|≤3n/4z

q(z) ≥ n2 min
n/4≤|z|≤3n/4

q(z).

Fix z with |z| ∈ [n/4, 3n/4] and let r = rz; we have r ≥ n/16. Then with Ar
as in the separation lemma,

q(z) = P(L(Y z)∩/Xz[1, τD])

≥ P(L(Y z)∩/Xz[1, τD]|Ar)P (Ar)

≥ P({L(Y z)∩/Xz[1, τD]} ∩ {Wr ≥ rc1}|Ar)Es(r)

≥ c2P(L(Y z)∩/Xz[1, τD]|{Wr ≥ rc1} ∩Ar)Es(r).

Standard Harnack type estimates then give

P(L(Y z)∩/Xz[1, τD]|{Wr ≥ rc1} ∩Ar) ≥ c3 > 0,

so q(z) ≥ Es(n/16) and the lower bound on L2(n) then follows. �

In [Law13] Lawler obtained improved results on the probability that a LEW

in Z2 uses a given edge. Let D = [−(n − 1), n] × [−(n − 1), n − 1], and

e = {(0, 0), (1, 0)}. Define

DL = {(−(n− 1), j),−(n− 1) ≤ j ≤ n− 1},
DR = {(n+ 1, j),−(n− 1) ≤ j ≤ n− 1}.

Let π be uniform measure on DL. Let P̃ be the law of a SRW X started with

measure π and conditioned on the event that X exits D at a point in DR. We

write X̃ for this conditioned process. Then Lawler proves

Theorem 3.14 ([Law13].) Let L̃ = L(X̃0, X̃1, . . . , X̃TDR
). Then

P̃(L̃ uses the edge e) � n−3/4. (3.14)

Corollary 3.15 We have

Es(n) � n−3/4, (3.15)

and hence L2(n) � n5/4.
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Proof. Let A1 = [−n/2, n/2]2, A2 = [−3n/4, 3n/4]2. Then for each x ∈ DL

we have Px(X̃ hits A1) � 1. Write T1 = min{k ≥ 0 : X̃k ∈ A1}, σ2 = sup{k ≤
τD : X̃k ∈ A2}. If we write X̃(i) the rotation of X̃ by iπ/4 for i = 0, 1, 2, 3,

then the laws of the path X̃(i)[T1, σ2] are all absolutely continuous. It follows

from this and (3.14) that we also have

P(0 ∈ L̃) � n−3/4. (3.16)

Applying Proposition 3.11 to the conditioned random walk X̃, and using

the notation of that Proposition, we obtain from (3.16) that∑
x∈DL

πxG̃D(x, 0)P(L(Ỹ 0,x[0, Tx])∩/X̃0[1, τD]) � n−3/4. (3.17)

For each x ∈ DL we have G̃D(x, 0) � 1, and since the laws of X, X̃ and Y 0,x

are comparable inside [−n/2, n/2]2, we have

P(L(Ỹ 0,x[0, Tx])∩/X̃0[1, τD]) � Es(n/2).

So the right side of (3.17) is comparable to Es(n), and thus Es(n) � n−3/4. �

We will (mainly) continue to use the notation L2(n) rather than n5/4 in

what follows, since it will make the structure of many expressions clearer.

Theorem 3.16 ([BM10].) Let D ⊂ Z2 be simply connected and suppose each

point z ∈ D is within n of ∂D.

(a) Let z0, z1, . . . , zk ∈ D, and write ri = |zi − zi−1| ∧ |zi − zi+1| ∧ rzi, where

rz = dist(z, ∂D). Then

Pz0(z1, . . . , zk ∈ LEW(0, Dc) in order ) ≤ Ck
k∏
i=1

GD(zi−1, zi)Es(ri).

(b) For k ≥ 0, E0(MD)k ≤ Ckk!L2(n)k.

(c) For λ ≥ 1, P(MD ≥ λL2(n)) ≤ 2 exp(−λ/2C).

Proofs. Given (b), it is easy to prove (c):

P(MD ≥ λL2(n)) = P(eMD/2CL2(n) ≥ eλ/2C) ≤ E(eMD/2CL2(n))

eλ/2C
.
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Then

E(eMD/2CL2(n)) ≤
∞∑
k=0

E
( Mk

D

k!(2CL2(n))k

)
≤
∞∑
k=0

2−k = 2.

Proving (b) from (a) is a bit more complicated, but is straightforward.

Given (a), we have writing LD = LEW(0, D),

EMk
D = E

(∑
z

1(z∈LD)

)k
= E

∑
z1

· · ·
∑
zk

1(z1,z2,...,zk∈LD)

=
∑
z1

· · ·
∑
zk

P(z1, z2, . . . , zk ∈ LD)

= k!
∑
z1

· · ·
∑
zk

P(z1, z2, . . . , zk ∈ LD in order)

≤ k!
∑
z1

· · ·
∑
zk

Ck
k∏
i=1

GD(zi−1, zi)Es(ri)

This sum can be handled inductively:

EMk
D

Ckk!
≤
∑
z1

· · ·
∑
zk−1

k−1∏
i=1

GD(zi−1, zi)Es(ri)
∑
zk

GD(zk−1, zk)Es(rk)

≤
∑
z1

· · ·
∑
zk−1

k−1∏
i=1

GD(zi−1, zi)Es(ri)C
′L2(n),

and continuing one gets (b).

The hard work is in proving (a), and this uses a generalisation of Proposition

3.11 to k points.

Definition 3.17 Suppose that z0, z1, . . . , zk are any distinct points in a do-

main D ⊂ Z2, and X is a Markov chain on Z2 with Pz0(σXD < ∞) = 1. Let

Vz0,...,zk be the event that X0 = z0 and z1, z2, . . . , zk are all visited by the path

LX[0, σD] in order.

Proposition 3.18 Suppose that z0, z1, . . . , zk are distinct points in a domain

D ⊂ Z2, and X is a Markov chain on Z2 with Pz0(σXD <∞) = 1. Define zk+1

to be ∂D and for i = 0, . . . , k, let Xi be independent versions of X started at

zi and Y i be Xi conditioned on the event {Tzi+1 ≤ τD}. Let σi = max{k ≤
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τY
i

D : Y i
k = zi+1}, and

Fi =
{
L(Y i−1[0, σi−1])∩/

k⋃
j=i

Y j [1, σj ]
}
, i = 1, . . . , k.

Then,

Pz0(Vz0,...,zk) = P
( k⋂
i=1

Fi

) k∏
i=1

GXD(zi−1, zi).

To see why this is true, look at the case k = 2:

Pz0(z1 and then z2 ∈ LEW(0, Dc)) ≤ cGD(z0, z1)Es(r1)GD(z1, z2)Es(r2).

For this to happen we need (at least):

(1) X hits z1,

(2) After hitting z1 the process X avoids the previous path, i.e. LEW(0, z1),

(3) X then hits z2,

(4) After hitting z2 the process X avoids its previous path up to its exit from

B(z2, r2).

The Green’s function terms relate to the hitting probabilities, weighted by

the fact that one can have more than one attempt to include the points zi.

The Es(ri) terms then bound from above the collision probabilities.

We also have a lower bound:

Theorem 3.19 ([BM10].) Let BE(0,m) ⊂ D ⊂ Z2. Then for each ε > 0

P(MD ≤ λ−1L2(m)) ≤ c(ε) exp(−c′(ε)λ4/5−ε). (3.18)

It is clear that one cannot obtain this from moment bounds, but will need

to use some independence.

Here is an outline of the argument. It is easier to use boxes than balls so

we will write B∞(x, r) for the square in Z2 with centre x and side 2r – i.e.

balls in the `∞ norm in Z2.

1. First, one can restrict to proving the result for Bn = [−n, n]2. More

precisely, we use Theorem 3.7 to compare LEW(0, Dc) with LEW(0, Bc
n) inside

B∞(0, n/4).
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2. Let k ≥ 1, to be chosen later, and set m = n/4k. Define squares Qj =

B∞(0, jm), j = 1, . . . , k. Let L = LEW(0, Bc
n), let

Tj = min{i : Li ∈ ∂Qj},

and write xj = LTj . Let e1 = (1, 0), e2 = (0, 1) and Dj = {xj ± ei, i = 1, 2} be

the set of four points in Z2 which are either a horizontal or vertical distance

m/2 from xj . Let x′j be a point in Dj chosen so that Aj = B∞(x′j ,m/4) lies

outside Qj , and where we use some procedure to choose x′j if there exist two

such points. Let Q∗j = B∞(xj ,m). Let Fj = σ(Li, i ≤ Tj), and αj be the path

L between Tj and T ′j , where

T ′j = min{i ≥ Tj : Li 6∈ Q∗j}.

Let ξj be the number of hits by αj on Aj .

Lemma 3.20 For z ∈ Aj,

P(z ∈ αj |Fj) ≥ c(log k)−3Es(m). (3.19)

For Lemma 3.20, if one had the unconditioned random walk, then by Propo-

sitions 3.12 and 3.13 one would have P(z ∈ αj) � GB∞(xj ,m)(xj , z)Es(rz) �
Es(m). Let γj = L[0, Tj ], and condition on a fixed path γj . Let Y be SRW

in Bn conditioned on {τBn < T+
γj}. Then to prove (3.19) we need to calcu-

late with the process Y rather than the SRW X. One needs the following

rather delicate estimate, which is a kind of boundary Harnack principle which

is uniform in the set γj .

Proposition 3.21 ([Mas09, Proposition 3.5].) Let γj be any path in Qj end-

ing at xj, and Y be as above. Write τ = τB∞(xj ,m/4)(Y ). Then

P(Yτ ∈ Aj) ≥ p0 > 0. (3.20)

Using Lemma 3.20 and similar estimates, one obtains by summing over

z ∈ Aj ,

Lemma 3.22

c1(log k)−3L2(n) ≤E(ξj |Fj) ≤ c2(log k)L2(n), (3.21)

E(ξ2
j |Fj) ≤ c2(log k)2L2(n)2. (3.22)
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Hence

P
(
ξj < L2(m)/(log k)3

)
≤ 1− c

(log k)8
. (3.23)

The lower tail estimate (3.23) follows from (3.21) and (3.22) by the second

moment method. We remark that the bounds (3.21) and (3.22) also hold for

the unconditioned walk.

Proof of Theorem 3.19. Since MBn ≥
∑

j ξj , we have

P(MBn < b−3L2(m)) ≤ P(ξj < (log k)−3L2(m) for j = 1, . . . , k)

≤ (1− c(log k)−8)k ≤ c exp(−c′k(log k)−8).

We have L2(m) = L2(n/k) � k−5/4L2(n), so if λ−1 = L2(m)/L2(n)(log k)3

then k(log k)−8 ≤ λ4/5−ε, and we obtain (3.18). �

4 Geometry of the UST in two dimensions

Using these bounds, we can compare the sizes of balls in the Euclidean and

dU metrics. Recall that P is the law of the UST, BE denotes Euclidean balls,

and BU the (random) balls in the intrinsic dU metric. Earlier we guessed that

BE(0, r) ' BU (0, r5/4).

Theorem 4.1 For λ ≥ 1

P
(
BU (0, λ−1L2(r)) 6⊂ BE(0, r)

)
≤ Ce−λ2/3 (4.1)

P
(
BE(0, r) 6⊂ BU (0, λL2(r))

)
≤ C(ε)λ−4/15−ε. (4.2)

Remark. It is not hard to see that one cannot expect to do better than the

polynomial bound in (4.2). Consider the first stage of the construction of U ,

by making an infinite LEW started from 0. This walk has probability at least

k−δ of returning inside BE(0, r) after leaving BE(0, kr) – see [BM11, Remark

2.5]. If this event occurs, then one would expect BE(0, r) to contain points z

with dU (0, z) ' (kr)5/4.

Outline of proof of (a). Our estimates on LEW from Theorem 3.16 give that

P
(
dU (0, w) < λ−1L2(|w|)

)
≤ ce−cλ3/4 .
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Consider first the following crude argument. Set R = λ−1L2(r). Suppose

there exists x ∈ BU (0, R) with |x| > r. Then following the unique geodesic in

U from x to 0, there exists y ∈ ∂BE(0, r) with dU (0, y) ≤ dU (0, x) ≤ R. So

P
(
BU (0, R) 6⊂ BE(0, r)

)
≤

∑
y∈∂BE(0,r)

P(dU (0, y) ≤ λ−1L2(r))

≤ cr exp(−cλ3/4) = c exp(−cλ3/4 + log r).

So we obtain a good bound only when λ > c(log r)4/3, while we want a bound

which holds for fixed λ and for all r.

To improve this estimate, we use the same idea – that the probability that

dU (0, x)� L2(|x|) is small, but use a more careful construction.

Step 1. Choose small but fixed δ > 0 and cover BE(0, r)−BE(0, r/2) by a set

D1 with roughly δ−2 points, with separation rδ.

Step 2. Start the Wilson construction of U by running LEW from the points

in D1 to 0. Call this tree V1. With high probability the parts of these paths

inside B(0, r/4) will all have length greater than λ−1L2(r/4).

Step 3. Fill in the remainder of the UST. With high probability the LEW

started at any point y ∈ BE(0, 3r/4)c will hit V1 before it reaches BE(0, r/4),

and therefore

dU (y, 0) ≥ min
x∈V1∩∂BE(0,r/4)

dU (x, 0) ≥ λ−1L2(r/4).

(Actually, again to avoid log r error terms, one needs to choose a sequence of

finite sets Dk with separation 2−kδr and build trees Vk.) �

While usually BU (x, r) will contain a small Euclidean ball, there have to

be neighbouring points in Z2 which are distant in U .

Lemma 4.2 ([BLPS].) The box [−n, n]2 contains with probability 1 neigh-

bouring points x, y in Z2 with dU (x, y) ≥ n.

Proof. Look at the path (in Z2) of length 4n around the box [−n, n]2: call this

z0, z1, . . . , z4n. If each pair zj , zj+1 were connected by a path in U of length

less than n then this path would not contain 0. Hence we would obtain a loop

around 0 – which is impossible since U is a tree. �
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Volume Bounds

Let `2(R) be the inverse of L2(r), so that

`2(R) � R4/5.

Theorem 4.3 For λ ≥ 1,

P(|BU (0, R)| ≥ λ`2(R)2) ≤ c exp(−cλ1/3) (4.3)

P(|BU (0, R)| ≤ λ−1`2(R)2) ≤ c exp(−cλ1/9). (4.4)

Outline of proof. The upper bound (4.3) follows from Theorem 4.1, which

gives that with high probability BU (0, R) ⊂ BE(0, λ1/2`2(R)).

For the lower bound (4.4) one shows it is very likely that the first few

LEW paths are of about the right length, and nearly enclose some small ball

BE(z, ε2r), where r = `2(R). More precisely we start with a list of k candidate

balls BE(zi, εr) on the part of the first path L = LEW(0,∞) until it hits

∂BE(0, r).

1. If L returns to BE(0, r) after its first hit on ∂BE(0, 2r) we remove any ball

Bi hit by L on its return. (One can show that the probability that more than

k/2 balls are removed is less than c exp(−ck1/3).)

2. We then take a ball remaining on the list, and run Wilson’s algorithm in

BE(zi, ε
2r). ‘Success’ means all paths are inside BE(zi, εr) and are not too

long. We can show P(‘success’) ≥ 1
4 . If a path escapes it may ‘compromise’

other balls by entering them – but it is very unlikely to compromise more than

k1/4 balls. Any compromised ball is removed from the list.

3. If we do not succeed we try again, until we run out of balls.

If a ‘success’ occurs then we have obtained a Euclidean ball BE(zi, ε
2r) which

with high probability is contained in BU (0, λL2(r)), so that

|BU (0, λL2(r))| ≥ ε4r2.

Effective Resistance. Recall that Reff(0, BU (0, R)c) is the effective resistance

between 0 and the boundary of BU (0, R). Since U contains a path length R

from 0 to the boundary of the ball, we have Reff(0, BU (0, R)c) ≤ R + 1; we

want a lower bound of the same order.

We can do this by counting ‘cut sets’. For 0 < s < R let Ns be the number

of points z with dU (0, z) = s such that z is connected to BU (0, R)c by a path
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which, except for its first step, lies outside BU (0, s). Since U2 is a tree, we

have that Ns is increasing in s. So

Reff(0, BU (0, R)c) ≥
R/2∑
s=1

1

Ns
≥

1
2R

NR/2
. (4.5)

Thus if NR ≤ c1 we obtain Reff(0, BU (0, R)c) ≥ R/(2c1).

If the construction of U in the proof of Theorem 4.1 works, then any path

γ in U from 0 to BE(0, r)c will lie in the tree V1 when it is inside BE(0, r/8).

This tree has at most δ−2 paths, so we obtain

Reff(0, BE(0, r)c) ≥ cδ−2L2(r/4).

It then follows (set R = L2(r)) that

Reff(0, BU (0, R)c) ≥ c′R.

Theorem 4.4 ([BM11].) For λ ≥ 1,

P(Reff(0, BU (0, r)c) < λ−1r) ≤ c exp(−cλ2/11).

5 Random walks on U2.

Definition. A graph G = (V,E) satisfies the condition V (α) if

|B(x, r)| � rα, for all x ∈ V, r ≥ 1.

G satisfies RES(β) if:

Reff(x, y) � d(x, y)β

V (x, d(x, y))

(
� d(x, y)β−α if V (α) holds

)
.

The case of interest is when α < β, and so Reff(x, y)→∞ as d(x, y)→∞.

Example. For Z1 one has Reff(x, y) = |y − x| = |y − x|2−1 so RES(2) holds.

The condition does not hold for Zd for any d ≥ 2, since for x 6= y,

Reff(x, y) � log |y − x|, if d = 2,

0 < c0 ≤ Reff(x, y) ≤ c1 for all x 6= y if d ≥ 3.

(For a transient graph the resistance from a point ‘to infinity’ is finite.)
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Given a graph G write pn(x, y) for the (discrete time) heat kernel on G:

pn(x, y) =
P x(Xn = y)

µy
.

Define the spectral dimension of G by

ds(G) = −2 lim
n→∞

log p2n(x, x)

log(2n)
, if this limit exists. (5.1)

Theorem 5.1 [BCK05]. Let G be a locally finite infinite connected graph,

and β > α ≥ 1. Suppose that G satisfies V (α) and RES(β). Then

Reff(x,Bd(x,R)c) � Rβ−α

and

Exτ(x,R) � rβ, x ∈ V, r ≥ 1, (5.2)

Exd(x,Xn) � n1/β, (5.3)

p2n(x, x) � n−α/β. (5.4)

In particular one has

ds(G) =
2α

β
.

In fact one also obtains, under the same hypotheses, sub-Gaussian heat

kernel bounds for pn(x, y).

Estimates from one point. Theorem 5.1 assumes we have control of Bd(x, r)

for all x ∈ V , r ≥ 1. Suppose instead that we just have estimates for the balls

Bd(o, r), where o ∈ V is some marked point.

Theorem 5.2 (Implicit in [BJKS, KM08].) Let o ∈ V , α > 0. Suppose:

V (o, r) � rα,
Reff(o, x) � d(0, x).

Then writing β = 1 + α,

p2n(o, o) � n−α/β, Eoτ(o, r) � rβ,

and

ds(G) =
2α

β
.

This is useful for random graphs, where control of balls Bd(o, r) may be pos-

sible, while control of all balls Bd(x, r) could be hopeless.
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Application to random graphs. Let (Ω,P) be a probability space, carrying a

random graphs G(ω), ω ∈ Ω. Assume each G(ω) has a marked point o. Write

P xω for the law of the SRW X on G(ω) with X0 = x ∈ G(ω).

Definition. Let α ≥ 1. For λ ≥ 1 say that Bd(o, r) ∈ G(ω) is λ-good if:

λ−1rα ≤ |Bd(o, r)| ≤ λrα, (5.5)

r/λ ≤ Reff(o,Bd(o, r)
c) ≤ r + 1. (5.6)

(Note that the right hand inequality in (5.6) always holds.)

We say the family G(ω) satisfies Condition A if there exists c1 ≥ 1 and

θ > 0 such that

P( Bd(o, r) is λ-good ) ≥ 1− λ−θ, for all r ≥ c1. (A)

λ-good means that (within a factor of λ) the volume and resistance properties

of Bd(o, r) are what we want them to be.

Theorem 5.3 ([BJKS, KM08].) Suppose G(ω) satisfies Condition A. Then

there exists γ > 0 such that for all large t and r, writing β = 1 + α,

(log r)−γrβ ≤ Eoωτ(o, r) ≤ (log r)γrβ,

(log t)−γn−α/β ≤ P2n(o, o)(ω) ≤ (log n)γn−α/β.

In particular, P–a.s.,

ds(G) =
2α

β
=

2α

1 + α
,

dw(G) = lim
R→∞

Eoωτ(o,R)

logR
= 1 + α.

Several families of random graphs are now known to satisfy Condition (A):

(1) The incipient infinite cluster for spread out oriented percolation in Z+×Zd

with d ≥ 6. [BJKS].

(2) Invasion percolation on a regular tree. [AGHS].

(3) The incipient infinite cluster for percolation on Zd with d ≥ 19 [KN].

(4) Critical finite variance Galton-Watson trees conditioned to survive forever

[FK].
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In all these cases the trees are close to a critical GW tree conditioned on

non-extinction, and α = 2 and ds = 4/3. In addition we have the following

examples with α 6= 2.

(5) θ stable Galton-Watson trees conditioned to survive forever [CK]. Here

α = θ/(θ − 1), and

ds =
2α

1 + α
=

2θ

2θ − 1
.

(6) The uniform spanning tree in d = 2. Here, as we have seen from the results

above, α = 8/5, β = 1 + α = 13/5 and so ds = 2α/β = 16/13.

Remark. Theorem 5.3 was particularly useful for studying the IIC for ori-

ented percolation, since estimates for ball volumes were only available from

the base point (0, 0). However, the UST is translation invariant, and so one

can obtain better estimates of the off-diagonal terms pn(x, y) – see [BM11] for

details.
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